DOI QR코드

DOI QR Code

Effect of Structure Change in Second-Generation Superconducting Wire Stabilization Layer on Resistivity Characteristics

2세대 초전도 선 안정화 층 구조변화가 비저항 특성에 미치는 영향

  • Ban, Sang-Jae (Department of Electricity Engineering, Jeonbuk National University) ;
  • Du, Ho-Ik (Department of Electricity Engineering, Jeonbuk National University) ;
  • Jeong, Hyun-Gi (Department of Electricity Engineering, Jeonbuk National University) ;
  • Doo, Seung-Gyu (Korea Atomic Energy Research Institute) ;
  • Yang, Sung-Chae (Department of Electricity Engineering, Jeonbuk National University)
  • Received : 2021.10.15
  • Accepted : 2021.11.24
  • Published : 2022.03.01

Abstract

The quench voltage of the second-generation superconducting wire is affected by the resistivity characteristics of the stabilization layer. The specific resistance of the stabilization layer can be changed by the deposition process using RF magnetron sputtering. In this paper, a thin film made of a homogeneous material (Ag) and a dissimilar material (Cu) was deposited on the stabilization layer of the second-generation superconducting wire through RF magnetron sputtering. We found that the specific resistance was reduced by increasing the thickness of the stabilization layer. The reduction in the resistivity of the stabilization layer led to a decrease in the quench voltage of the second-generation superconducting wire. We suggest that various characteristic changes of the second-generation superconducting wire can be expected through the successful change in the resistivity of the stabilization layer of the proposed deposition process.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C1013385).

References

  1. P. Tixador, Superconducting Fault Current Limiter, Chapter 11-15 (World Scientific, New Jersey, 2019).
  2. T. Watanabe, Y. Shiohara, and T. Izumi, IEEE Trans. Appl. Supercon., 13, 2445 (2003). [DOI: https://doi.org/10.1109/TASC.2003.811818]
  3. H. I. Du and S. C. Yang, IEEE Trans. Appl. Supercon., 26, 5602704 (2016). [DOI: https://doi.org/10.1109/TASC.2016.2545107]
  4. H. I. Du, H. G. Jeong, S. J. Ban, and S. C. Yang, IEEE Trans. Appl. Supercon., 30, 5602005 (2020). [DOI: https://doi.org/10.1109/TASC.2020.2980530]
  5. H. I. Du, Y. J. Kim, D. H. Lee, B. S. Han, S. S. Song, M. J. Kim, and S. C. Han, IEEE Trans. Appl. Supercon., 21, 1238 (2011). [DOI: https://doi.org/10.1109/TASC.2010.2100792]
  6. H. I. Du, S. C. Yang, and H. G. Jeong, IEEE Trans. Appl. Supercon., 27, 5601306 (2017). [DOI: https://doi.org/10.1109/TASC.2017.2656779]
  7. H. I. Du, H. G. Jeong, S. J. Ban, and S. C. Yang, IEEE Trans. Appl. Supercon., 30, 5602105 (2020). [DOI: https://doi.org/10.1109/TASC.2020.2980532]
  8. T. C. Gorjanc, D. Leong, C. Py, and D. Roth, Thin Solid Films, 413, 181 (2002). [DOI: https://doi.org/10.1016/S0040-6090(02)00425-X]