Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.2.10

Effect of Structure Change in Second-Generation Superconducting Wire Stabilization Layer on Resistivity Characteristics  

Ban, Sang-Jae (Department of Electricity Engineering, Jeonbuk National University)
Du, Ho-Ik (Department of Electricity Engineering, Jeonbuk National University)
Jeong, Hyun-Gi (Department of Electricity Engineering, Jeonbuk National University)
Doo, Seung-Gyu (Korea Atomic Energy Research Institute)
Yang, Sung-Chae (Department of Electricity Engineering, Jeonbuk National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.2, 2022 , pp. 172-177 More about this Journal
Abstract
The quench voltage of the second-generation superconducting wire is affected by the resistivity characteristics of the stabilization layer. The specific resistance of the stabilization layer can be changed by the deposition process using RF magnetron sputtering. In this paper, a thin film made of a homogeneous material (Ag) and a dissimilar material (Cu) was deposited on the stabilization layer of the second-generation superconducting wire through RF magnetron sputtering. We found that the specific resistance was reduced by increasing the thickness of the stabilization layer. The reduction in the resistivity of the stabilization layer led to a decrease in the quench voltage of the second-generation superconducting wire. We suggest that various characteristic changes of the second-generation superconducting wire can be expected through the successful change in the resistivity of the stabilization layer of the proposed deposition process.
Keywords
Second-generation superconducting wire; RF magnetron sputtering deposition; Ag and Cu thin film; Resistivity characteristics of the stabilization layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. C. Gorjanc, D. Leong, C. Py, and D. Roth, Thin Solid Films, 413, 181 (2002). [DOI: https://doi.org/10.1016/S0040-6090(02)00425-X]   DOI
2 H. I. Du, H. G. Jeong, S. J. Ban, and S. C. Yang, IEEE Trans. Appl. Supercon., 30, 5602105 (2020). [DOI: https://doi.org/10.1109/TASC.2020.2980532]   DOI
3 H. I. Du, S. C. Yang, and H. G. Jeong, IEEE Trans. Appl. Supercon., 27, 5601306 (2017). [DOI: https://doi.org/10.1109/TASC.2017.2656779]   DOI
4 H. I. Du, Y. J. Kim, D. H. Lee, B. S. Han, S. S. Song, M. J. Kim, and S. C. Han, IEEE Trans. Appl. Supercon., 21, 1238 (2011). [DOI: https://doi.org/10.1109/TASC.2010.2100792]   DOI
5 P. Tixador, Superconducting Fault Current Limiter, Chapter 11-15 (World Scientific, New Jersey, 2019).
6 T. Watanabe, Y. Shiohara, and T. Izumi, IEEE Trans. Appl. Supercon., 13, 2445 (2003). [DOI: https://doi.org/10.1109/TASC.2003.811818]   DOI
7 H. I. Du and S. C. Yang, IEEE Trans. Appl. Supercon., 26, 5602704 (2016). [DOI: https://doi.org/10.1109/TASC.2016.2545107]   DOI
8 H. I. Du, H. G. Jeong, S. J. Ban, and S. C. Yang, IEEE Trans. Appl. Supercon., 30, 5602005 (2020). [DOI: https://doi.org/10.1109/TASC.2020.2980530]   DOI