DOI QR코드

DOI QR Code

Loss of EMP2 Inhibits Melanogenesis of MNT1 Melanoma Cells via Regulation of TRP-2

  • Enkhtaivan, Enkhmend (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Kim, Hyun Ji (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Kim, Boram (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Byun, Hyung Jung (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Yu, Lu (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Nguyen, Tuan Minh (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Nguyen, Thi Ha (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Do, Phuong Anh (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Kim, Eun Ji (Lillehei Heart Institute, University of Minnesota) ;
  • Kim, Kyung Sung (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Huy, Hieu Phung (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Rahman, Mostafizur (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Jang, Ji Yun (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Rho, Seung Bae (National Cancer Center) ;
  • Lee, Ho (National Cancer Center) ;
  • Kang, Gyeoung Jin (Lillehei Heart Institute, University of Minnesota) ;
  • Park, Mi Kyung (National Cancer Center) ;
  • Kim, Nan-Hyung (Department of Dermatology, Dongguk University Ilsan Hospital) ;
  • Choi, Chang Ick (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Lee, Kyeong (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Han, Hyo Kyung (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Cho, Jungsook (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Lee, Ai Young (Department of Dermatology, Dongguk University Ilsan Hospital) ;
  • Lee, Chang Hoon (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University)
  • Received : 2022.01.03
  • Accepted : 2022.02.07
  • Published : 2022.03.01

Abstract

Melanogenesis is the production of melanin from tyrosine by a series of enzyme-catalyzed reactions, in which tyrosinase and DOPA oxidase play key roles. The melanin content in the skin determines skin pigmentation. Abnormalities in skin pigmentation lead to various skin pigmentation disorders. Recent research has shown that the expression of EMP2 is much lower in melanoma than in normal melanocytes, but its role in melanogenesis has not yet been elucidated. Therefore, we investigated the role of EMP2 in the melanogenesis of MNT1 human melanoma cells. We examined TRP-1, TRP-2, and TYR expression levels during melanogenesis in MNT1 melanoma cells by gene silencing of EMP2. Western blot and RT-PCR results confirmed that the expression levels of TYR and TRP-2 were decreased when EMP2 expression was knocked down by EMP2 siRNA in MNT1 cells, and these changes were reversed when EMP2 was overexpressed. We verified the EMP2 gene was knocked out of the cell line (EMP2 CRISPR/Cas9) by using a CRISPR/Cas9 system and found that the expression levels of TRP-2 and TYR were significantly lower in the EMP2 CRISPR/Cas9 cell lines. Loss of EMP2 also reduced migration and invasion of MNT1 melanoma cells. In addition, the melanosome transfer from the melanocytes to keratinocytes in the EMP2 KO cells cocultured with keratinocytes was reduced compared to the cells in the control coculture group. In conclusion, these results suggest that EMP2 is involved in melanogenesis via the regulation of TRP-2 expression.

Keywords

Acknowledgement

This study was supported by a grant from the Basic Science Research Program through the NRF (NRF-2018R1A5A2023127, NRF-2020R1A2C3004973, and NRF-2020M3E5E20383 56), the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Korea (HP20C0131), and the BK21 FOUR program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (MOE, Korea).

References

  1. Ahmat Amin, M. K. B., Shimizu, A. and Ogita, H. (2019) The pivotal roles of the epithelial membrane protein family in cancer invasiveness and metastasis. Cancers 11, 1620. https://doi.org/10.3390/cancers11111620
  2. Bolanca, I., Bolanca, Z., Kuna, K., Vukovic, A., Tuckar, N., Herman, R. and Grubisic, G. (2008) Chloasma--the mask of pregnancy. Coll. Antropol. 32 Suppl 2, 139-141.
  3. Choi, E. K., Park, E. J., Phan, T. T., Kim, H. D., Hoe, K. L. and Kim, D. U. (2020) Econazole induces P53-dependent apoptosis and decreases metastasis ability in gastric cancer cells. Biomol. Ther. (Seoul) 28, 370-379. https://doi.org/10.4062/biomolther.2019.201
  4. Chuong, C. M., Nickoloff, B., Elias, P., Goldsmith, L., Macher, E., Maderson, P., Sundberg, J., Tagami, H., Plonka, P., Thestrup-Pederson, K., Bernard, B. A., Schroder, J. M., Dotto, P., Chang, C. M., Williams, M. L., Feingold, K. R., King, L. E., Kligman, A. M., Rees, J. L. and Christophers, E. (2002) What is the 'true' function of skin? Exp. Dermatol. 11, 159-187. https://doi.org/10.1034/j.1600-0625.2002.00112.x
  5. Costin, G. E. and Hearing, V. J. (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 21, 976-994. https://doi.org/10.1096/fj.06-6649rev
  6. Doudna, J. A. and Charpentier, E. (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096. https://doi.org/10.1126/science.1258096
  7. Enkhtaivan, E. and Lee, C. H. (2021) Role of amine neurotransmitters and their receptors in skin pigmentation: therapeutic implication. Int. J. Mol. Sci. 22, 8071. https://doi.org/10.3390/ijms22158071
  8. GTEx Consortium (2017) Genetic effects on gene expression across human tissues. Nature 550, 204-213. https://doi.org/10.1038/nature24277
  9. Hassan, I., Kaur, I., Sialy, R. and Dash, R. J. (1998) Hormonal milieu in the maintenance of melasma in fertile women. J. Dermatol. 25, 510-512. https://doi.org/10.1111/j.1346-8138.1998.tb02445.x
  10. Ito, Y. and Sato, K. (2021) Salicylamide enhances melanin synthesis in B16F1 melanoma cells. Biomol. Ther. (Seoul) 21, 445-451.
  11. Jeon, S., Kim, N. H., Koo, B. S., Lee, H. J. and Lee, A. Y. (2007) Bee venom stimulates human melanocyte proliferation, melanogenesis, dendricity and migration. Exp. Mol. Med. 39, 603-613. https://doi.org/10.1038/emm.2007.66
  12. Kim, H. J., Kim, B., Byun, H. J., Yu, L., Nguyen, T. M., Nguyen, T. H., Do, P. A., Kim, E. J., Cheong, K. A., Kim, K. S., Huy Phung, H., Rahman, M., Jang, J. Y., Rho, S. B., Kang, G. J., Park, M. K., Lee, H., Lee, K., Cho, J., Han, H. K., Kim, S. G., Lee, A. Y. and Lee, C. H. (2021a) Resolvin D1 suppresses H2O2-induced senescence in fibroblasts by inducing autophagy through the miR-1299/ARG2/ARL1 axis. Antioxidants 10, 1924. https://doi.org/10.3390/antiox10121924
  13. Kim, H. J., Park, M. K., Byun, H. J., Kim, M., Kim, B., Yu, L., Nguyen, T. M., Nguyen, T. H., Do, P. A., Kim, E. J., Kim, J. H., Enkhtaivan, E., Kim K. S., Jang, J. Y., Kang, G. J., Lee, H., Won M., Lee, K., Cho, J. and Lee, C. H. (2021b) LW1497, an inhibitor of malate dehydrogenase, suppresses TGF-β1-induced epithelial-mesenchymal transition in lung cancer cells by downregulating slug. Antioxidants 10, 1674. https://doi.org/10.3390/antiox10111674
  14. Kim, H. J., Lee, H. J., Park, M. K., Gang, K. J., Byun, H. J., Park, J. H., Kim, M. K., Kim, S. Y. and Lee, C. H. (2014) Involvement of transglutaminase-2 in α-MSH-induced melanogenesis in SK-MEL-2 human melanoma cells. Biomol. Ther. (Seoul) 22, 207-212. https://doi.org/10.4062/biomolther.2014.031
  15. Kim, N. H., Choi, S. H., Yi, N., Lee, T. R. and Lee, A. Y. (2017) Arginase-2, a miR-1299 target, enhances pigmentation in melasma by reducing melanosome degradation via senescence-induced autophagy inhibition. Pigment Cell Melanoma Res. 30, 521-530. https://doi.org/10.1111/pcmr.12605
  16. Kiyohara, M. H., Dillard, C., Tsui, J., Kim, S. R., Lu, J., Sachdev, D., Goodglick, L., Tong, M., Torous, V. F., Aryasomayajula, C., Wang, W., Najafzadeh, P., Gordon, L. K., Braun, J., McDermott, S., Wicha, M. S. and Wadehra, M. (2017) EMP2 is a novel therapeutic target for endometrial cancer stem cells. Oncogene 36, 5793-5807. https://doi.org/10.1038/onc.2017.142
  17. Kobayashi, T., Urabe, K., Winder, A., Jimenez-Cervantes, C., Imokawa, G., Brewington, T., Solano, F., Garcia-Borron, J. and Hearing, V. (1994) Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J. 13, 5818-5825. https://doi.org/10.1002/j.1460-2075.1994.tb06925.x
  18. Lambert, M. W., Maddukuri, S., Karanfilian, K. M., Elias, M. L. and Lambert, W. C. (2019) The physiology of melanin deposition in health and disease. Clin. Dermatol. 37, 402-417. https://doi.org/10.1016/j.clindermatol.2019.07.013
  19. Lee, A. Y. (2015) Recent progress in melasma pathogenesis. Pigment Cell Melanoma Res. 28, 648-660. https://doi.org/10.1111/pcmr.12404
  20. Lee, H., Park, M., Kim, S., Park Choo, H., Lee, A. and Lee, C. (2011) Serotonin induces melanogenesis via serotonin receptor 2A. BR. J. Dermatol. 165, 1344-1348. https://doi.org/10.1111/j.1365-2133.2011.10490.x
  21. Lee, J., Yoon, S. S., Thuy, P. X. and Moon, E. Y. (2020) Synovial cell migration is associated with B cell activating factor expression increased by TNF𝛼 or decreased by KR33426. Biomol. Ther. (Seoul) 28, 405-413. https://doi.org/10.4062/biomolther.2020.110
  22. Lee, E. J., Park, M. K., Kim, H. J., Kim, E. J., Kang, G. J., Byun, H. J. and Lee, C. H. (2016) Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells. Biochim. Biophys. Acta Mol. Cell Res. 1863, 1157-1169. https://doi.org/10.1016/j.bbamcr.2016.02.007
  23. Li, C. F., Chan, T. C., Pan, C. T., Vejvisithsakul, P. P., Lai, J. C., Chen, S. Y., Hsu, Y. W., Shiao, M. S. and Shiue, Y. L. (2021) EMP2 induces cytostasis and apoptosis via the TGFβ/SMAD/SP1 axis and recruitment of P2RX7 in urinary bladder urothelial carcinoma. Cell. Oncol. 44, 1133-1150. https://doi.org/10.1007/s13402-021-00624-x
  24. Li, C. F., Wu, W. J., Wu, W. R., Liao, Y. J., Chen, L. R., Huang, C. N., Li, C. C., Li, W. M., Huang, H. Y., Chen, Y. L., Liang, S. S., Chow, N. H. and Shiue, Y. L. (2015) The cAMP responsive element binding protein 1 transactivates epithelial membrane protein 2, a potential tumor suppressor in the urinary bladder urothelial carcinoma. Oncotarget 6, 9220-9239. https://doi.org/10.18632/oncotarget.3312
  25. Lin, C. L., Tsai, M. L., Chen, Y. h., Liu, W. N., Lin, C. Y., Hsu, K. W., Huang, C. Y., Chang, Y. J., Wei, P. L., Chen, S. H., Huang, L. C. and Lee, C. H. (2021) Platelet-derived growth factor receptor-α subunit targeting suppresses metastasis in advanced thyroid cancer in vitro and in vivo. Biomol. Ther. (Seoul) 29, 551-561. https://doi.org/10.4062/biomolther.2020.205
  26. Lin, W. C., Gowdy, K. M., Madenspacher, J. H., Zemans, R. L., Yamamoto, K., Lyons-Cohen, M., Nakano, H., Janardhan, K., Williams, C. J., Cook, D. N., Mizgerd, J. P. and Fessler, M. B. (2020) Epithelial membrane protein 2 governs transepithelial migration of neutrophils into the airspace. J. Clin. Invest. 130, 157-170. https://doi.org/10.1172/jci127144
  27. Liu, Y., Dakou, E., Meng, Y. and Leyns, L. (2019) Loss of Emp2 compromises cardiogenic differentiation in mouse embryonic stem cells. Biochem. Biophys. Res. Commun. 511, 173-178. https://doi.org/10.1016/j.bbrc.2019.02.048
  28. Ma, Y., Schroder, D. C., Nenkov, M., Rizwan, M. N., Abubrig, M., Sonnemann, J., Murrieta-Coxca, J. M., Morales-Prieto, D. M., Westermann, M., Gassler, N. and Chen, Y. (2021) Epithelial membrane protein 2 suppresses non-small cell lung cancer cell growth by inhibition of MAPK pathway. Int. J. Mol. Sci. 22, 2944. https://doi.org/10.3390/ijms22062944
  29. Mobasher, P., Foulad, D. P., Raffi, J., Zachary, C., Fackler, N., Zohuri, N., Juhasz, M. and Atanaskova Mesinkovska, N. (2020) Catamenial hyperpigmentation: a review. J. Clin. Aesthet. Dermatol. 13, 18-21.
  30. Natale, C. A., Duperret, E. K., Zhang, J., Sadeghi, R., Dahal, A., O'Brien, K. T., Cookson, R., Winkler, J. D. and Ridky, T. W. (2016) Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors. Elife 5, e15104. https://doi.org/10.7554/elife.15104
  31. Negroiu, G., Dwek, R. A. and Petrescu, S. M. (2005) Tyrosinase-related protein-2 and -1 are trafficked on distinct routes in B16 melanoma cells. Biochem. Biophys. Res. Commun. 328, 914-921. https://doi.org/10.1016/j.bbrc.2005.01.040
  32. Qin, Y., Fu, M., Takahashi, M., Iwanami, A., Kuga, D., Rao, R. G., Sudhakar, D., Huang, T., Kiyohara, M., Torres, K., Dillard, C., Inagaki, A., Kasahara, N., Goodglick, L., Braun, J., Mischel, P. S., Gordon, L. K. and Wadehra, M. (2014) Epithelial membrane protein-2 (EMP2) activates Src protein and is a novel therapeutic target for glioblastoma. J. Biol. Chem. 289, 13974-13985. https://doi.org/10.1074/jbc.M113.543728
  33. Rho, S. B., Byun, H. J., Kim, B. R. and Lee, C. H. (2021) Knockdown of LKB1 sensitizes endometrial cancer cells via AMPK activation. Biomol. Ther. (Seoul) 29, 650-657. https://doi.org/10.4062/biomolther.2021.131
  34. Serre, C., Busuttil, V. and Botto, J. M. (2018) Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int. J. Cosmet. Sci. 40, 328-347. https://doi.org/10.1111/ics.12466
  35. Tang, Z., Kang, B., Li, C., Chen, T. and Zhang, Z. (2019) GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556-W560. https://doi.org/10.1093/nar/gkz430
  36. Tobin, D. J. (2006) Biochemistry of human skin-our brain on the outside. Chem. Soc. Rev. 35, 52-67. https://doi.org/10.1039/B505793K
  37. Tuerxuntayi, A., Liu, Y.-q., Tulake, A., Kabas, M., Eblimit, A. and Aisa, H. A. (2014) Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells. BMC Complement. Altern. Med. 14, 166. https://doi.org/10.1186/1472-6882-14-166
  38. Wadehra, M., Goodglick, L. and Braun, J. (2004) The tetraspan protein EMP2 modulates the surface expression of caveolins and glycolsylphosphatidyl inositol-linked proteins. Mol. Biol. Cell 15, 2073-2083. https://doi.org/10.1091/mbc.E03-07-0488
  39. Wadehra, M., Iyer, R., Goodglick, L. and Braun, J. (2002) The tetraspan protein epithelial membrane protein-2 interacts with β1 integrins and regulates adhesion. J. Biol. Chem. 277, 41094-41100. https://doi.org/10.1074/jbc.M206868200
  40. Wadehra, M., Mainigi, M., Morales, S. A., Rao, R. G., Gordon, L. K., Williams, C. J. and Braun, J. (2008) Steroid hormone regulation of EMP2 expression and localization in the endometrium. Reprod. Biol. Endocrinol. 6, 15. https://doi.org/10.1186/1477-7827-6-15
  41. Wang, C. X., Wadehra, M., Fisk, B. C., Goodglick, L. and Braun, J. (2001) Epithelial membrane protein 2, a 4-transmembrane protein that suppresses B-cell lymphoma tumorigenicity. Blood 97, 3890-3895. https://doi.org/10.1182/blood.v97.12.3890
  42. Wang, M., Li, S., Zhang, P., Wang, Y., Wang, C., Bai, D. and Jiang, X. (2019) EMP2 acts as a suppressor of melanoma and is negatively regulated by mTOR-mediated autophagy. J. Cancer 10, 3582-3592. https://doi.org/10.7150/jca.30342
  43. Wang, Y. W., Cheng, H. L., Ding, Y. R., Chou, L. H. and Chow, N. H. (2017) EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim. Biophys. Acta Rev. Cancer 1868, 199-211. https://doi.org/10.1016/j.bbcan.2017.04.004
  44. Yokoyama, K., Yasumoto, K.-i., Suzuki, H. and Shibahara, S. (1994) Cloning of the human DOPAchrome tautomerase/tyrosinase-related protein 2 gene and identification of two regulatory regions required for its pigment cell-specific expression. J. Biol. Chem. 269, 27080-27087. https://doi.org/10.1016/S0021-9258(18)47128-1