DOI QR코드

DOI QR Code

Primary Cilium by Polyinosinic:Polycytidylic Acid Regulates the Regenerative Migration of Beas-2B Bronchial Epithelial Cells

  • Gweon, Bomi (Department of Mechanical Engineering, Sejong University) ;
  • Jang, Tae-Kyu (Department of Integrated Bioscience and Biotechnology, Sejong University) ;
  • Thuy, Pham Xuan (Department of Integrated Bioscience and Biotechnology, Sejong University) ;
  • Moon, Eun-Yi (Department of Integrated Bioscience and Biotechnology, Sejong University)
  • Received : 2022.01.22
  • Accepted : 2022.01.30
  • Published : 2022.03.01

Abstract

The airway epithelium is equipped with the ability to resist respiratory disease development and airway damage, including the migration of airway epithelial cells and the activation of TLR3, which recognizes double-stranded (ds) RNA. Primary cilia on airway epithelial cells are involved in the cell cycle and cell differentiation and repair. In this study, we used Beas-2B human bronchial epithelial cells to investigate the effects of the TLR3 agonist polyinosinic:polycytidylic acid [Poly(I:C)] on airway cell migration and primary cilia (PC) formation. PC formation increased in cells incubated under serum deprivation. Migration was faster in Beas-2B cells pretreated with Poly(I:C) than in control cells, as judged by a wound healing assay, single-cell path tracking, and a Transwell migration assay. No changes in cell migration were observed when the cells were incubated in conditioned medium from Poly(I:C)-treated cells. PC formation was enhanced by Poly(I:C) treatment, but was reduced when the cells were exposed to the ciliogenesis inhibitor ciliobrevin A (CilioA). The inhibition of Beas-2B cell migration by CilioA was also assessed and a slight decrease in ciliogenesis was detected in SARS-CoV-2 spike protein (SP)-treated Beas-2B cells overexpressing ACE2 compared to control cells. Cell migration was decreased by SP but restored by Poly(I:C) treatment. Taken together, our results demonstrate that impaired migration by SP-treated cells can be attenuated by Poly(I:C) treatment, thus increasing airway cell migration through the regulation of ciliogenesis.

Keywords

Acknowledgement

We sincerely thank So-Jeong Park and Seo-Yeon Choi for their technical assistance to experiments of Transwell migration assay and single cell path tracking. This research was supported by the Basic Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (grant number 2021R1A4A5033289).

References

  1. Avasthi, P. and Marshall, W. F. (2012) Stages of ciliogenesis and regulation of ciliary length. Differentiation 83, S30-S42. https://doi.org/10.1016/j.diff.2011.11.015
  2. Basten, S. G. and Giles, R. H. (2013) Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2, 6. https://doi.org/10.1186/2046-2530-2-6
  3. Castillon, N., Hinnrasky, J., Zahm, J. M., Kaplan, H., Bonnet, N., Corlieu, P., Klossek, J. M., Taouil, K., Avril-Delplanque, A., Peault, B. and Puchelle, E. (2002) Polarized expression of cystic fibrosis transmembrane conductance regulator and associated epithelial proteins during the regeneration of human airway surface epithelium in three-dimensional culture. Lab. Invest. 82, 989-998. https://doi.org/10.1097/01.LAB.0000022221.88025.43
  4. Chen, E., Chen, C., Niu, Z., Gan, L., Wang, Q., Li, M., Cai, X., Gao, R., Katakam, S., Chen, H., Zhang, S., Zhou, R., Cheng, X., Qiu, Y., Yu, H., Zhu, T. and Liu, J. (2020) Poly(I:C) preconditioning protects the heart against myocardial ischemia/reperfusion injury through TLR3/PI3K/Akt-dependent pathway. Signal Transduct. Target. Ther. 5, 216. https://doi.org/10.1038/s41392-020-00257-w
  5. Choi, H., Shin, J. H., Kim, E. S., Park, S. J., Bae, I. H., Jo, Y. K., Jeong, I. Y., Kim, H. J., Lee, Y., Park, H. C., Jeon, H. B., Kim, K. W., Lee, T. R. and Cho, D. H. (2016) Primary cilia negatively regulate melanogenesis in melanocytes and pigmentation in a human skin model. PLoS ONE 11, e0168025. https://doi.org/10.1371/journal.pone.0168025
  6. de Bentzmann, S., Polette, M., Zahm, J. M., Hinnrasky, J., Kileztky, C., Bajolet, O., Klossek, J. M., Filloux, A., Lazdunski, A. and Puchelle, E. (2000) Pseudomonas aeruginosa virulence factors delay airway epithelial wound repair by altering the actin cytoskeleton and inducing overactivation of epithelial matrix metalloproteinase-2. Lab. Invest. 80, 209-219. https://doi.org/10.1038/labinvest.3780024
  7. Go, A., Ryu, Y. K., Lee, J. W. and Moon, E. Y. (2013) Cell motility is decreased in macrophages activated by cancer cell-conditioned medium. Biomol. Ther. (Seoul) 21, 481-486. https://doi.org/10.4062/biomolther.2013.076
  8. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C. and Pohlmann, S. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  9. Holgate, S. T. (2008) The airway epithelium is central to the pathogenesis of asthma. Allergol. Int. 57, 1-10. https://doi.org/10.2332/allergolint.R-07-154
  10. Huang, Y., Fu, Z., Dong, W., Zhang, Z., Mu, J. and Zhang, J. (2018) Serum starvation-induces down-regulation of Bcl-2/Bax confers apoptosis in tongue coating-related cells in vitro. Mol. Med. Rep. 17, 5057-5064.
  11. Jackson, D. J. and Johnston, S. L. (2010) The role of viruses in acute exacerbations of asthma. J Allergy Clin. Immunol. 125, 1178-1187. https://doi.org/10.1016/j.jaci.2010.04.021
  12. Jang, J. W., Lee, J. W., Yoon, Y. D., Kang, J. S. and Moon, E. Y. (2020) Bisphenol A and its substitutes regulate human B cell survival via Nrf2 expression. Environ. Pollut. 259, 113907. https://doi.org/10.1016/j.envpol.2019.113907
  13. Kim, D. and Garza, L. A. (2019) Hypothesis: wound-induced TLR3 activation stimulates endogenous retinoic acid synthesis and signalling during regeneration. Exp. Dermatol. 28, 450-452. https://doi.org/10.1111/exd.13931
  14. Kim, J., Choi, H., Choi, D. H., Park, K., Kim, H. J. and Park, M. (2021) Application of green tea catechins, polysaccharides, and flavonol prevent fine dust induced bronchial damage by modulating inflammation and airway cilia. Sci. Rep. 11, 2232. https://doi.org/10.1038/s41598-021-81989-9
  15. Koizumi, Y., Nagase, H., Nakajima, T., Kawamura, M. and Ohta, K. (2016) Toll-like receptor 3 ligand specifically induced bronchial epithelial cell death in caspase dependent manner and functionally upregulated Fas expression. Allergol. Int. 65 Suppl, S30-S37. https://doi.org/10.1016/j.alit.2016.05.006
  16. Lee, I. T., Nakayama, T., Wu, C. T., Goltsev, Y., Jiang, S., Gall, P. A., Liao, C. K., Shih, L. C., Schurch, C. M., McIlwain, D. R., Chu, P., Borchard, N. A., Zarabanda, D., Dholakia, S. S., Yang, A., Kim, D., Chen, H., Kanie, T., Lin, C. D., Tsai, M. H., Phillips, K. M., Kim, R., Overdevest, J. B., Tyler, M. A., Yan, C. H., Lin, C. F., Lin, Y. T., Bau, D. T., Tsay, G. J., Patel, Z. M., Tsou, Y. A., Tzankov, A., Matter, M. S., Tai, C. J., Yeh, T. H., Hwang, P. H., Nolan, G. P., Nayak, J. V. and Jackson, P. K. (2020a) ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat. Commun. 11, 5453. https://doi.org/10.1038/s41467-020-19145-6
  17. Lee, J., Yoon, S. S., Thuy, P. X. and Moon, E. Y. (2020b) Synovial cell migration is associated with B cell activating factor expression increased by TNFalpha or decreased by KR33426. Biomol. Ther. (Seoul) 28, 405-413. https://doi.org/10.4062/biomolther.2020.110
  18. Lee, J. W., Kim, H. S. and Moon, E. Y. (2019) Thymosin beta-4 is a novel regulator for primary cilium formation by nephronophthisis 3 in HeLa human cervical cancer cells. Sci. Rep. 9, 6849. https://doi.org/10.1038/s41598-019-43235-1
  19. Lewandowska-Polak, A., Brauncajs, M., Jarzebska, M., Pawelczyk, M., Kurowski, M., Chalubinski, M., Makowska, J. and Kowalski, M. L. (2018) Toll-like receptor agonists modulate wound regeneration in airway epithelial cells. Int. J. Mol. Sci. 19, 2456. https://doi.org/10.3390/ijms19082456
  20. Lim, Y. S. and Tang, B. L. (2015) A role for Rab23 in the trafficking of Kif17 to the primary cilium. J. Cell Sci. 128, 2996-3008. https://doi.org/10.1242/jcs.163964
  21. Martin, T. R. and Frevert, C. W. (2005) Innate immunity in the lungs. Proc. Am. Thorac. Soc. 2, 403-411. https://doi.org/10.1513/pats.200508-090JS
  22. Nelson, A. M., Reddy, S. K., Ratliff, T. S., Hossain, M. Z., Katseff, A. S., Zhu, A. S., Chang, E., Resnik, S. R., Page, C., Kim, D., Whittam, A. J., Miller, L. S. and Garza, L. A. (2015) dsRNA released by tissue damage activates TLR3 to drive skin regeneration. Cell Stem Cell 17, 139-151. https://doi.org/10.1016/j.stem.2015.07.008
  23. Oertel, M., Graness, A., Thim, L., Buhling, F., Kalbacher, H. and Hoffmann, W. (2001) Trefoil factor family-peptides promote migration of human bronchial epithelial cells: synergistic effect with epidermal growth factor. Am. J. Respir. Cell Mol. Biol. 25, 418-424. https://doi.org/10.1165/ajrcmb.25.4.4429
  24. Ott, C. and Lippincott-Schwartz, J. (2012) Visualization of live primary cilia dynamics using fluorescence microscopy. Curr. Protoc. Cell Biol. Chapter 4, Unit 4.26.
  25. Pedersen, L. B., Schroder, J. M., Satir, P. and Christensen, S. T. (2012) The ciliary cytoskeleton. Compr. Physiol. 2, 779-803. https://doi.org/10.1002/cphy.c110043
  26. Puchelle, E., Zahm, J. M., Tournier, J. M. and Coraux, C. (2006) Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 3, 726-733. https://doi.org/10.1513/pats.200605-126SF
  27. Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. and Golemis, E. A. (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351-1363. https://doi.org/10.1016/j.cell.2007.04.035
  28. Satir, P., Pedersen, L. B. and Christensen, S. T. (2010) The primary cilium at a glance. J. Cell Sci. 123, 499-503. https://doi.org/10.1242/jcs.050377
  29. Stowell, N. C., Seideman, J., Raymond, H. A., Smalley, K. A., Lamb, R. J., Egenolf, D. D., Bugelski, P. J., Murray, L. A., Marsters, P. A., Bunting, R. A., Flavell, R. A., Alexopoulou, L., San Mateo, L. R., Griswold, D. E., Sarisky, R. T., Mbow, M. L. and Das, A. M. (2009) Long-term activation of TLR3 by poly(I:C) induces inflammation and impairs lung function in mice. Respir. Res. 10, 43. https://doi.org/10.1186/1465-9921-10-43
  30. Wang, P. F., Fang, H., Chen, J., Lin, S., Liu, Y., Xiong, X. Y., Wang, Y. C., Xiong, R. P., Lv, F. L., Wang, J. and Yang, Q. W. (2014) Polyinosinic-polycytidylic acid has therapeutic effects against cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via TLR3. J. Immunol. 192, 4783-4794. https://doi.org/10.4049/jimmunol.1303108
  31. Wang, W. C., Kuo, C. Y., Tzang, B. S., Chen, H. M. and Kao, S. H. (2012) IL-6 augmented motility of airway epithelial cell BEAS-2B via Akt/GSK-3beta signaling pathway. J. Cell. Biochem. 113, 3567-3575. https://doi.org/10.1002/jcb.24235
  32. Wang, X., Ha, T., Liu, L., Hu, Y., Kao, R., Kalbfleisch, J., Williams, D. and Li, C. (2018) TLR3 mediates repair and regeneration of damaged neonatal heart through glycolysis dependent YAP1 regulated miR-152 expression. Cell Death Differ. 25, 966-982. https://doi.org/10.1038/s41418-017-0036-9
  33. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C. and Zhang, Y. Z. (2020) A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269. https://doi.org/10.1038/s41586-020-2008-3
  34. Zahm, J. M., Chevillard, M. and Puchelle, E. (1991) Wound repair of human surface respiratory epithelium. Am. J. Respir. Cell Mol. Biol. 5, 242-248. https://doi.org/10.1165/ajrcmb/5.3.242