Acknowledgement
We would like to thank Ms. Nahyeon Gu and Kanghee Ryu for their technical assistance (Namseoul University). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1F1A1058721).
References
- Aeffner, F., Zarella, M. D., Buchbinder, N., Bui, M. M., Goodman, M. R., Hartman, D. J., Lujan, G. M., Molani, M. A., Parwani, A. V., Lillard, K., Turner, O. C., Vemuri, V. N. P., Yuil-Valdes, A. G. and Bowman, D. (2019) Introduction to digital image analysis in whole-slide imaging: a white paper from the Digital Pathology Association. J. Pathol. Inform. 10, 9. https://doi.org/10.4103/jpi.jpi_82_18
- Boorman, G. A., Maronpot, R. R. and Eustis, S. L. (1994) Rodent carcinogenicity bioassay: past, present, and future. Toxicol. Pathol. 22, 105-111. https://doi.org/10.1177/019262339402200204
- Bos, P. D., Nguyen, D. X. and Massague, J. (2010) Modeling metastasis in the mouse. Curr. Opin. Pharmacol. 10, 571-577. https://doi.org/10.1016/j.coph.2010.06.003
- Bradley, A. and Jacobsen, M. (2019) Toxicologic Pathology Forum*: opinion on considerations for the use of whole slide images in GLP pathology peer review. Toxicol. Pathol. 47, 100-107. https://doi.org/10.1177/0192623318818790
- Brent, R. and Boucheron, L. (2018) Deep learning to predict microscope images. Nat. Methods 15, 868-870. https://doi.org/10.1038/s41592-018-0194-9
- Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyo, D., Moreira, A. L., Razavian, N. and Tsirigos, A. (2018) Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559-1567. https://doi.org/10.1038/s41591-018-0177-5
- Farahani, N., Parwani, A. V. and Pantanowitz, L. (2015) Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol. Lab. Med. Int. 7, 23-33.
- Gilhodes, J. C., Jule, Y., Kreuz, S., Stierstorfer, B., Stiller, D. and Wollin, L. (2017) Quantification of pulmonary fibrosis in a bleomycin mouse model using automated histological image analysis. PLoS ONE 12, e0170561. https://doi.org/10.1371/journal.pone.0170561
- Hart, I. R. and Fidler, I. J. (1980) Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 40, 2281-2287.
- Hoefling, H., Sing, T., Hossain, I., Boisclair, J., Doelemeyer, A., Flandre, T., Piaia, A., Romanet, V., Santarossa, G., Saravanan, C., Sutter, E., Turner, O., Wuersch, K. and Moulin, P. (2021) HistoNet: a deep learning-based model of normal histology. Toxicol. Pathol. 49, 784-797. https://doi.org/10.1177/0192623321993425
- Kannan, S., Morgan, L. A., Liang, B., Cheung, M. G., Lin, C. Q., Mun, D., Nader, R. G., Belghasem, M. E., Henderson, J. M., Francis, J. M., Chitalia, V. C. and Kolachalama, V. B. (2019) Segmentation of glomeruli within trichrome images using deep learning. Kidney Int. Rep. 4, 955-962. https://doi.org/10.1016/j.ekir.2019.04.008
- Komura, D. and Ishikawa, S. (2019) Machine learning approaches for pathologic diagnosis. Virchows Arch. 475, 131-138. https://doi.org/10.1007/s00428-019-02594-w
- Kuo, K. H. and Leo, J. M. (2019) Optical versus virtual microscope for medical education: a systematic review. Anat. Sci. Educ. 12, 678-685. https://doi.org/10.1002/ase.1844
- Mazer, B. L., Homer, R. J. and Rimm, D. L. (2019) False-positive pathology: improving reproducibility with the next generation of pathologists. Lab. Invest. 99, 1260-1265. https://doi.org/10.1038/s41374-019-0257-2
- Nam, S., Chong, Y., Jung, C. K., Kwak, T. Y., Lee, J. Y., Park, J., Rho, M. J. and Go, H. (2020) Introduction to digital pathology and computer-aided pathology. J. Pathol. Transl. Med. 54, 125-134. https://doi.org/10.4132/jptm.2019.12.31
- Pell, R., Oien, K., Robinson, M., Pitman, H., Rajpoot, N., Rittscher, J., Snead, D. and Verrill, C. (2019) The use of digital pathology and image analysis in clinical trials. J. Pathol. Clin. Res. 5, 81-90. https://doi.org/10.1002/cjp2.127
- Schaer, R., Otalora, S., Jimenez-Del-Toro, O., Atzori, M. and Muller, H. (2019) Deep learning-based retrieval system for gigapixel histopathology cases and the open access literature. J. Pathol. Inform. 10, 19. https://doi.org/10.4103/jpi.jpi_88_18
- Seger, S., Stritt, M., Vezzali, E., Nayler, O., Hess, P., Groenen, P. M. A. and Stalder, A. K. (2018) A fully automated image analysis method to quantify lung fibrosis in the bleomycin-induced rat model. PLoS ONE 13, e0193057. https://doi.org/10.1371/journal.pone.0193057
- Smith, M. A., Westerling-Bui, T., Wilcox, A. and Schwartz, J. (2021) Screening for bone marrow cellularity changes in cynomolgus macaques in toxicology safety studies using artificial intelligence models. Toxicol. Pathol. 49, 905-911. https://doi.org/10.1177/0192623320981560
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. (2016) Rethinking the inception architecture for computer vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818-2826.
- Veta, M., van Diest, P. J., Kornegoor, R., Huisman, A., Viergever, M. A. and Pluim, J. P. (2013) Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PLoS ONE 8, e70221. https://doi.org/10.1371/journal.pone.0070221
- Zarella, M. D., Bowman, D., Aeffner, F., Farahani, N., Xthona, A., Absar, S. F., Parwani, A., Bui, M. and Hartman, D. J. (2019) A practical guide to whole slide imaging: a white paper from the Digital Pathology Association. Arch. Pathol. Lab. Med. 143, 222-234. https://doi.org/10.5858/arpa.2018-0343-RA
- Zarella, M. D., Yeoh, C., Breen, D. E. and Garcia, F. U. (2017) An alternative reference space for H&E color normalization. PLoS ONE 12, e0174489. https://doi.org/10.1371/journal.pone.0174489