DOI QR코드

DOI QR Code

알루미늄-공기 전지의 음극 및 양극의 전기화학적 특성에 미치는 전해질 양이온의 영향

Effects of Electrolyte Cation on Electrochemical Properties of Negative and Positive Electrodes in Aluminum-Air Batteries

  • 이승환 (순천향대학교 에너지시스템학과) ;
  • 윤성재 (순천향대학교 에너지시스템학과) ;
  • 최원경 (단국대학교 경영공학과) ;
  • 백창현 (알루스(주) 연구소) ;
  • 정순기 (순천향대학교 에너지시스템학과)
  • 투고 : 2021.12.29
  • 심사 : 2022.02.20
  • 발행 : 2022.02.28

초록

알루미늄-공기 전지의 성능을 향상시키기 위해서는 전극의 전기화학적 특성에 미치는 전해질의 영향을 이해하는 것이 매우 중요하다. 본 연구에서는 NaCl, LiCl, CaCl2, ZnCl2와 같이 동일한 음이온을 가지나 양이온이 다른 전해질을 사용하여 음극과 양극에서 진행되는 전기화학적 산화·환원 반응에 미치는 전해질 양이온의 영향에 관하여 조사하였다. 전극의 방전 전위 및 비용량에 전해질 양이온이 영향을 준다는 것이 방전 시험, 주사전자현미경과 X-선 회절 분석에 의해 확인되었다. NaCl과 LiCl 전해질 용액 중에서 상대적으로 높은 셀 전압과 비용량이 얻어졌다. 양극 표면에는 Ca2+와 Zn2+ 이온에 의해 전극 반응을 방해하는 침전물이 생성되었으며, 이로 인해 양극 성능이 저하되었다. 게다가 Ca2+ 이온은 음극의 부동태화를 유발하면서 음극의 성능 저하를 촉진시켰다. 이것은 전해질의 양이온이 양극과 음극의 전기화학적 성능에 각각 다른 영향을 주고 있음을 시사하는 것이다.

To improve the performance of aluminum-air batteries, it is very important to understand the effect of electrolytes on the electrochemical properties of electrodes. In this study, the effects of electrolyte cations on the electrochemical redox reactions proceeding at the negative and positive electrodes were investigated using electrolytes having the same anion but different cations such as NaCl, LiCl, CaCl2, and ZnCl2. It was confirmed by discharge test, scanning electron microscopy and X-ray diffraction analysis that electrolyte cations affect the discharge potential and specific capacity of the electrode. Precipitates were formed on the surface of the positive electrode by Ca2+ and Zn2+ ions, resulting in degradation of the performance of the positive electrode. In addition, Ca2+ ions passivated the negative electrode and accelerated the performance degradation. This suggests that the positive ions of the electrolyte have different effects on the electrochemical performance of the positive and negative electrodes.

키워드

과제정보

This work was partly supported by the Technology development Program of MSS (S3102463) and the Korea Electric Power Corporation (Grant number : R20XO02-25).

참고문헌

  1. D. Zhang, H. Zhao, F. Liang, W. Ma & Y. Lei. (2021). Nanostructured Arrays for Metal-Ion Battery and Metal-Air Battery Applications. Journal of Power Sources, 493, 229722. DOI : 10.1021/acs.chemrev.9b00628
  2. W. Li, C. Han, K. Zhang, S. Chou & S. Dou. (2021). Strategies for Boosting Carbon Electrocatalysts for the Oxygen Reduction Reaction in Non-Aqueous Metal-Air Battery Systems. Journal of Materials Chemistry A, 9(11), 6671-6693. DOI : 10.1039/D1TA00203A
  3. X. Chen, Q. Zou, Z. Shi, Q. Le, M. Zhang & A. Atrens. (2021). The Discharge Performance of an As-Extruded Mg-Zn-La-Ce Anode for the Primary Mg-Air Battery. Electrochimica Acta, 404, 139763. DOI : 10.1016/j.electacta.2021.139763
  4. X. Jia, C. Liu, Z. G. Neale, J. Yang & G. Cao. (2020). Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 120(15), 7795-7866. DOI : 10.1021/acs.chemrev.9b00628
  5. M. Tamez & J. H. Yu. (2007). Aluminum-Air Battery. Journal of Chemical Education, 84(12), 1936A-1936B. DOI : 10.1021/ed084p1936A
  6. J. Zhang, Q. Zhou, Y. Tang, L. Zhang & Y. Li. (2019). Zinc-Air Batteries: Are They Ready for Prime Time?. Chemical Science, 10, 8924-8929. DOI : 10.1039/C9SC04221K
  7. J. Fu, R. Liang, G. Liu, A. Yu, Z. Bai, L. Yang, & Z. Chen. (2013). Recent Progress in Electrically Rechargeable Zinc-Air Batteries. Advanced Materials, 31(31), 1805230. DOI : 10.1002/adma.201805230
  8. C. Chakkaravarthy. A. K. Abdul Waheed & H. V. K. Udupa. (1981). Zinc-Air Alkaline Batteries-A review. Journal of Power Sources, 6(3), 203-228. DOI : 10.1016/0378-7753(81)80027-4
  9. R. Buckingham, T. Asset & P. Atanassov. (2021). Aluminum-Air Batteries: A Review of Alloys, Electrolytes and Design. Journal of Power Sources, 498, 229762. DOI : 10.1016/j.jpowsour.2021.229762
  10. R. Mori. (2013). A New Structured Aluminium-Air Secondary Battery with a Ceramic Aluminium Ion Conductor. RSC Advances, 3, 11547-11551. DOI : 10.1039/C3RA42211A
  11. L. D. Chen, J. K. Norskov & A. C. Luntz. (2015). Al-Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory. The Journal of Physical Chemistry Letters, 6, 175-179. DOI : 10.1021/jz502422v
  12. Q. Li & N. J. Bjerrum. (2002). Aluminum as Anode for Energy Storage and Conversion: A Review. Journal of Power Sources, 110(1), 1-10. DOI : 10.1016/S0378-7753(01)01014-X
  13. S. Yang & H. Knickle. (2002). Design and Analysis of Aluminum/Air Battery System for Electric Vehicles. Journal of Power Sources, 112, 162-173. DOI : 10.1016/S0378-7753(02)00370-1
  14. K. T. Chau, Y. S. Wong & C. C. Chan. (1999). An Overview of Energy Sources for Electric Vehicles. Energy Conversion and Management, 40(10), 1021-1039. DOI : 10.1016/S0196-8904(99)00021-7
  15. X. Liu, P. Zhang, J. Xue, C. Zhu, X. Li & Z. Wang. (2021). High Energy Efficiency of Al-Based Anodes for Al-Air Battery by Simultaneous Addition of Mn and Sb. Chemical Engineering Journal, 417, 128006. DOI : 10.1016/j.cej.2020.128006
  16. M. Mokhtar, M. Z. M. Talib, E. H. Majlan, S. M. Tasirin, W. M. F. W. Ramli, W. R. W. Daud, & J. Sahari. (2015). Recent Developments in Materials for Aluminum-Air Batteries: A Review. Journal of Industrial and Engineering Chemistry, 32, 1-20. DOI : 10.1016/j.jiec.2015.08.004
  17. N. Chawla. (2019). Recent Advances in Air-Battery Chemistries. Materials Today Chemistry, 12, 324-331. DOI : 10.1016/j.mtchem.2019.03.006
  18. D. Cicolin, M. Trueba, & S. P. Trasatti. (2014). Effect of Chloride Concentration, pH and Dissolved Oxygen, on the Repassivation of 6082-T6 Al Alloy. Electrochimica Acta, 124, 27-35. DOI : 10.1016/j.electacta.2013.09.003
  19. H. Lee, I. Park, S. Choi & J. Kim. (2017). Effect of Chloride on Anodic Dissolution of Aluminum in 4 M NaOH Solution for Aluminum-Air Battery. Journal of The Electrochemical Society, 164(4), A549. DOI : 10.1149/2.0171704jes
  20. Z. Wu, H. Zhang, K. Qin, J. Zou, K. Qin, C. Ban, J. Cui & H. Nagaumi. (2020). The Role of Gallium and Indium in Improving the Electrochemical Characteristics of Al-Mg-Sn-based alloy for Al-air battery anodes in 2 M NaCl solution. Journal of Materials Science, 55, 11545-11560. DOI : 10.1007/s10853-020-04755-8
  21. D. Y. Momodu, F. Barzegar, A. Bello, J. Dangbegnon, T. Masikhwa, J. Madito & N. Manyala. (2015). Simonkolleite-Graphene Foam Composites and Their Superior Electrochemical Performance. Electrochimica Acta, 151, 591-598. DOI : 10.1016/j.electacta.2014.11.015