DOI QR코드

DOI QR Code

셀로비오스의 미백화장품 소재 가능성 평가를 위한 멜라닌 세포에서 자가포식 및 멜라닌 생성 효능 연구

Evaluation of the Potential of Cellobiose as a Material for Whitening Cosmetics based on Autophagy and Melanin Production Efficacy in Melanocytes

  • 차병선 (아주대학교 생명과학과) ;
  • 이석주 (아주대학교 응용생명공학과) ;
  • ;
  • 정소영 (아주대학교 응용생명공학과) ;
  • 이소민 (아주대학교 생명과학과) ;
  • ;
  • 이상훈 (아주대학교 생명과학과) ;
  • ;
  • 빈범호 (아주대학교 생명과학과) ;
  • 곽병문 (아주대학교 생명과학과) ;
  • 허효진 (아주대학교 응용생명공학과)
  • 투고 : 2022.10.24
  • 심사 : 2022.12.27
  • 발행 : 2022.12.30

초록

셀로비오스(cellobiose)는 식물 등에 널리 분포하는 셀롤로오스의 분해 과정에서 생성되는 이당류이다. 환원당인 셀로비오스는 2 개의 β-1,4 결합으로 결합한 구조를 가지며, 식물 등에 존재하는 천연물로서, 건강식품이나 식품의 감미료, 화장품 원료, 의약품 원료로서 활용되어지고 있다. 본 연구에서는 다양하게 유용될 셀로비오스를 기능성 화장품인 미백 화장품 소재로서의 가능성을 확인하고자, 자가포식 활성화 및 멜라닌 생성저해 효능을 검토하였다. 인간 유래 멜라닌 생성 세포로 알려진 MNT-1 세포에서 셀로비오스의 농도에 따른 독성 실험을 진행한 결과 20 mg/mL이하에서 세포독성이 없음을 확인하였고, 공초점 현미경을 통해 셀룰비오스 처리에 따른 자가포식 표지자인 microtubule-associated protein 1 light chain 3 (LC3) puncta의 증가가 확인되었다. 또한 LC3의 형태가 LC3-I에서 LC3-∏로 변환됨을 확인하였으며, 농도와 시간에 따라 LC3-II양이 증가하는 것을 확인하였다. 셀로비오스를 동일 세포에서 20 mg/mL 농도로 7 일간 처리하여 멜라닌 생성량을 분석한 결과, 50% 이상 멜라닌 생성 감소를 확인하였다. 추가적으로, 멜라닌 생성 관련 단백질TYR 및 TYRP1의 발현량을 western blot법을 이용하여 분석한 결과, 농도의존적으로 발현이 저해되어 멜라닌 생성이 감소함을 확인하였다. 이러한 연구 내용을 기반을 토대로 셀로비오스를 함유한 화장품 크림제형을 확보하여 4 주 동안 제형의 변화를 확인 해본 결과 성상이 고온에서 액채형태로 변화하였지만 pH는 변화하지 않았음을 확인하였다. 결론적으로, 자가포식 활성화 및 멜라닌 생성 억제 과정에 셀로비오스가 관여함을 확인하였으며, 이를 통해 미백 화장품 소재로서의 활용 가능성을 제안하고자 한다.

Cellobiose is a dissacharide constituted by two glucose units joined by a β-('1,4') glycosidic bond that is produced by the decomposition of cellulose. This product exists naturally in plants and has been utilized in different industries as a food sweetener, and as a cosmetic and pharmaceutical material. In this study, the potential of cellobiose as a whitening cosmetic product was evaluated by analyzing autophagy induction and the inhibition of melanin production. A cytotoxicity test conducted in the human melanin-producing cell line MNT-1 with increasing concentrations of cellobiose revealed that this compound did not cause cytotoxicity at 20 mg/mL or less. Based on this, autophagy was firstly evaluated by immunostaining with the autophagy marker microtubule-associated protein 1 light chain 3 (LC3) after treatment with 20 mg/mL of cellobiose. The subsequent confocal microscopy analysis revealed an increase in LC3 puncta, indicating induction of autophagy. In addition, autophagy was further confirmed by western blot analysis, which demonstrated that cellobiose converted LC3-I to LC3- ∏ in a concentration- and time-dependent manners. An analysis of melanin contents after cellobiose treatment at a concentration of 20 mg/mL during 7 days revealed that melanin production was reduced by more than 50%. Additionally, the expression levels of melanogenesis-related proteins TYR and TYRP1 were markedly decreased after cellobiose treatment. Based on these studies, a cosmetic cream formulation containing cellobiose was prepared and the change in formulation was tested for 4 weeks, and it was confirmed that the appearance changed to liquid form at high temperature, but the pH did not change. In conclusion, the present research demonstrated that cellobiose activates autophagy and inhibits melanin production, and showed the potential of this product as a material for whitening cosmetics.

키워드

과제정보

This research was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (No. 2019005607 to B. H. B. and NRF-2021R1I1A1A01053991 to B. M. K), the Ajou University Research Fund (to B. H.B.), a grant provid ed by the Korea Initiative for fostering University of Research and Innovation Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (No. NRF2021M3H1A104892211; to B. H. B. and B. M. K.), the Gyeonggid o Business & Science Accelerator (GBSA) grant and the project (to B. H. B and B. M. K) and a grant provided by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF 2021R1A6A1A10044950; to B. H. B and B. M. K).

참고문헌

  1. T. Morita, M. Ozawa, H. Ito, S. Kimio, and S. Kiriyama, Cellobiose is extensively digested in the small intestine by β-galactosidase in rats, Nutrition, 24(11-12), 1199 (2008). https://doi.org/10.1016/j.nut.2008.06.029
  2. Y. Matsuura, Degradation of konjac glucomannan by enzymes in human feces and formation of short-chain fatty acids by intestinal anaerobic bacteria, J Nutr Sci Vitaminol (Tokyo), 44(3), 423 (1988). https://doi.org/10.3177/jnsv.44.423
  3. G. Zhang, L. Li, J. Liu, J Cai, J. Fu, N. Li, H. Cao, H. Xu, Y. Zhang, and R. Cao, Comparing the metabolite components of Sichuan sun vinegar and other kinds of vinegar based on non-targeted metabolomic, LWT, 164, 113640 (2022). https://doi.org/10.1016/j.lwt.2022.113640
  4. N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, Autophagy fights disease through cellular self-digestion, Nature, 451(7182), 1069 (2008). https://doi.org/10.1038/nature06639
  5. L. Yu, C. K. Mcphee, L. Zheng, G. A. Mard ones, Y. Rong, J. Peng, N. Mi, Y. Zhao, Z. Liu, F. Wan, D. W. Hailey, V. Oorschot, J. Klumperman, E. H. Baehrecke, and M. J. Lenardo, Termination of autophagy and reformation of lysosomes regulated by mTOR, Nature, 465(7300), 942 (2010). https://doi.org/10.1038/nature09076
  6. N. Mizushima and M. Komatsu, Autophagy renovation of cells and tissues, Cell, 147(4), 728 (2011). https://doi.org/10.1016/j.cell.2011.10.026
  7. B. Levine, N. Mizushima, and H. W. Virgin, Autophagy in immunity and inflammation, Nature, 469(7330), 323 (2011). https://doi.org/10.1038/nature09782
  8. J. Lee, S. Giordanoa, and J. Zhang, Autophagy mitochondria and oxidative stress: cross-talk and redox signalling, Biochem J, 441(2), 523 (2012). https://doi.org/10.1042/BJ20111451
  9. L. Eckhart, E. Tschachler, and F. Gruber, Autophagic control of skin aging. Front Cell Dev Biol, 7, 143(2019). https://doi.org/10.3389/fcell.2019.00143
  10. X. Sui, R. Chen, Z. Wang, Z. Huang, N. Kong, M. Zhang, W. Han, F. Lou, J. Yang, Q. Zhang, X. Wang, C. He, and H. Pan, Autophagy and chemotherapy resistance a promising therapeutic target for cancer treatment, Cell Death Dis, 4(10), e838 (2013).
  11. D. Murase, A. Hachiya, K. Takano, R. Hicks, M. O. Visscher, T. Kitahara, T. Hase, Y. Takema, and T. Yoshimori, Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes, JID Innov, 133(10), 2416 (2013).
  12. I. Tanida, T. Ueno, and E. Kominami, LC3 and Autophagy, ed. V. Deretic, 445, 77, Humana Press, Totowa, New Jersey. (2008).
  13. G. Runwal, E. Stamatakou, FH. Siddiqi, C. Puri, Y Zhu, and D. C. Rubinsztein, LC3-positive structures are prominent in autophagy-deficient cells, Sci. Rep, 9(1), 1(2019). https://doi.org/10.1038/s41598-018-37186-2
  14. J. Martinez, J. Almendinger, A. Oberst, R. Ness, C. P. Dillon, P. Fitzgerald, M. O. Hengartner, and D. R. Green, Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells, PNAS Nexus, 108(42), 17396 (2011).
  15. D. Murase, A. Hachiya, K. Takano, R .Hicks, V. O. Marty, K. Takashi, H. Tadashi, T. yoshinori, and Y. Tamotsu, Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes, J.Invest. Dermatol, 133(10), 2416(2013) https://doi.org/10.1038/jid.2013.165
  16. H. Ho and A. K. Ganesan, The pleiotropic roles of autophagy regulators in melanogenesis, Pigment Cell Melanoma Res, 24(4), 595 (2011). https://doi.org/10.1111/j.1755-148X.2011.00889.x
  17. J. Y. Kim, E. J. Lee, Y. Ahn, S Park, Y. J. Bae, T. G. Kim, and S. H. Oh, Cathepsin L, a Target of hypoxia-inducible factor-1-α, is involved in melanosome degradation in melanocytes, Int J Mol Sci, 22(16), 8596 (2021). https://doi.org/10.3390/ijms22168596
  18. S. Y. Jung, H. J. Yoo, H. J. Heo, S. M. Lee, B. Sofia, B. S. Cha, Lei Lei, S. H. Lee, B. H. Bin, M. G. Lee, and B. M. Kawk, Autophagy Activation by 2'-Fucosyllactose Reduces Melanin Production, J. Soc. Cosmet. Sci. Korea, 48(2), 105 (2022).
  19. S. M. De Leeuw, N. P. Smit, M. Van Veld hoven, E. M. Pennings, S. Pavel, J. W. Simons, and A. Schothorst, Melanin content of cultured human melanocytes and UV-induced cytotoxicity. J Photochem Photobiol B, 61(3), 106 (2001). https://doi.org/10.1016/S1011-1344(01)00168-3
  20. J. Y. Kim, J. Kim, Y. Ahn, E. J. Lee, S. Hwang, A. Abd urrahman, K. Park, H. J. Chung, H. J. Kim, S. H. Lee, M. S. Lee, and S. H Oh, Autophagy induction can regulate skin pigmentation by causing melanosome degradation in keratinocytes and melanocyte, Pigment Cell Melanoma Res, 33(3), 403(2020). https://doi.org/10.1111/pcmr.12838
  21. Korea. Patent 10-2018-0118033 (2021).
  22. P. F. Avila, M. F. Silva, M. Martins, and R. Goldbeck, Cello-oligosaccharides production from lignocellulosic biomass and their emerging prebiotic applications, J. Microbiol. Biotechnol, 37(5), 1(2021). https://doi.org/10.1007/s11274-020-02944-w