Browse > Article
http://dx.doi.org/10.15230/SCSK.2022.48.4.365

Evaluation of the Potential of Cellobiose as a Material for Whitening Cosmetics based on Autophagy and Melanin Production Efficacy in Melanocytes  

Byungsun, Cha (Department of Biology, Ajou University)
Seok ju, Lee (Department of Applied Biotechnology, Ajou University)
Sofia, Brito (Department of Applied Biotechnology, Ajou University)
So Young, Jung (Department of Applied Biotechnology, Ajou University)
So Min, Lee (Department of Biology, Ajou University)
Lei, Lei (Department of Biology, Ajou University)
Sang Hun, Lee (Department of Biology, Ajou University)
Zubaidah, Al-Khafaji (Department of Applied Biotechnology, Ajou University)
Bum-Ho, Bin (Department of Biology, Ajou University)
Byeong-Mun, Kwak (Department of Biology, Ajou University)
Hyojin, Heo (Department of Applied Biotechnology, Ajou University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.48, no.4, 2022 , pp. 365-372 More about this Journal
Abstract
Cellobiose is a dissacharide constituted by two glucose units joined by a β-('1,4') glycosidic bond that is produced by the decomposition of cellulose. This product exists naturally in plants and has been utilized in different industries as a food sweetener, and as a cosmetic and pharmaceutical material. In this study, the potential of cellobiose as a whitening cosmetic product was evaluated by analyzing autophagy induction and the inhibition of melanin production. A cytotoxicity test conducted in the human melanin-producing cell line MNT-1 with increasing concentrations of cellobiose revealed that this compound did not cause cytotoxicity at 20 mg/mL or less. Based on this, autophagy was firstly evaluated by immunostaining with the autophagy marker microtubule-associated protein 1 light chain 3 (LC3) after treatment with 20 mg/mL of cellobiose. The subsequent confocal microscopy analysis revealed an increase in LC3 puncta, indicating induction of autophagy. In addition, autophagy was further confirmed by western blot analysis, which demonstrated that cellobiose converted LC3-I to LC3- ∏ in a concentration- and time-dependent manners. An analysis of melanin contents after cellobiose treatment at a concentration of 20 mg/mL during 7 days revealed that melanin production was reduced by more than 50%. Additionally, the expression levels of melanogenesis-related proteins TYR and TYRP1 were markedly decreased after cellobiose treatment. Based on these studies, a cosmetic cream formulation containing cellobiose was prepared and the change in formulation was tested for 4 weeks, and it was confirmed that the appearance changed to liquid form at high temperature, but the pH did not change. In conclusion, the present research demonstrated that cellobiose activates autophagy and inhibits melanin production, and showed the potential of this product as a material for whitening cosmetics.
Keywords
cellobiose; natural product; autophagy; whitening; melanin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Lee, S. Giordanoa, and J. Zhang, Autophagy mitochondria and oxidative stress: cross-talk and redox signalling, Biochem J, 441(2), 523 (2012).   DOI
2 L. Eckhart, E. Tschachler, and F. Gruber, Autophagic control of skin aging. Front Cell Dev Biol, 7, 143(2019).   DOI
3 X. Sui, R. Chen, Z. Wang, Z. Huang, N. Kong, M. Zhang, W. Han, F. Lou, J. Yang, Q. Zhang, X. Wang, C. He, and H. Pan, Autophagy and chemotherapy resistance a promising therapeutic target for cancer treatment, Cell Death Dis, 4(10), e838 (2013).
4 D. Murase, A. Hachiya, K. Takano, R. Hicks, M. O. Visscher, T. Kitahara, T. Hase, Y. Takema, and T. Yoshimori, Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes, JID Innov, 133(10), 2416 (2013).
5 I. Tanida, T. Ueno, and E. Kominami, LC3 and Autophagy, ed. V. Deretic, 445, 77, Humana Press, Totowa, New Jersey. (2008).
6 G. Runwal, E. Stamatakou, FH. Siddiqi, C. Puri, Y Zhu, and D. C. Rubinsztein, LC3-positive structures are prominent in autophagy-deficient cells, Sci. Rep, 9(1), 1(2019).   DOI
7 J. Martinez, J. Almendinger, A. Oberst, R. Ness, C. P. Dillon, P. Fitzgerald, M. O. Hengartner, and D. R. Green, Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells, PNAS Nexus, 108(42), 17396 (2011).
8 D. Murase, A. Hachiya, K. Takano, R .Hicks, V. O. Marty, K. Takashi, H. Tadashi, T. yoshinori, and Y. Tamotsu, Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes, J.Invest. Dermatol, 133(10), 2416(2013)   DOI
9 H. Ho and A. K. Ganesan, The pleiotropic roles of autophagy regulators in melanogenesis, Pigment Cell Melanoma Res, 24(4), 595 (2011).   DOI
10 J. Y. Kim, E. J. Lee, Y. Ahn, S Park, Y. J. Bae, T. G. Kim, and S. H. Oh, Cathepsin L, a Target of hypoxia-inducible factor-1-α, is involved in melanosome degradation in melanocytes, Int J Mol Sci, 22(16), 8596 (2021).   DOI
11 S. Y. Jung, H. J. Yoo, H. J. Heo, S. M. Lee, B. Sofia, B. S. Cha, Lei Lei, S. H. Lee, B. H. Bin, M. G. Lee, and B. M. Kawk, Autophagy Activation by 2'-Fucosyllactose Reduces Melanin Production, J. Soc. Cosmet. Sci. Korea, 48(2), 105 (2022).
12 S. M. De Leeuw, N. P. Smit, M. Van Veld hoven, E. M. Pennings, S. Pavel, J. W. Simons, and A. Schothorst, Melanin content of cultured human melanocytes and UV-induced cytotoxicity. J Photochem Photobiol B, 61(3), 106 (2001).   DOI
13 J. Y. Kim, J. Kim, Y. Ahn, E. J. Lee, S. Hwang, A. Abd urrahman, K. Park, H. J. Chung, H. J. Kim, S. H. Lee, M. S. Lee, and S. H Oh, Autophagy induction can regulate skin pigmentation by causing melanosome degradation in keratinocytes and melanocyte, Pigment Cell Melanoma Res, 33(3), 403(2020).   DOI
14 Y. Matsuura, Degradation of konjac glucomannan by enzymes in human feces and formation of short-chain fatty acids by intestinal anaerobic bacteria, J Nutr Sci Vitaminol (Tokyo), 44(3), 423 (1988).   DOI
15 Korea. Patent 10-2018-0118033 (2021).
16 P. F. Avila, M. F. Silva, M. Martins, and R. Goldbeck, Cello-oligosaccharides production from lignocellulosic biomass and their emerging prebiotic applications, J. Microbiol. Biotechnol, 37(5), 1(2021).   DOI
17 T. Morita, M. Ozawa, H. Ito, S. Kimio, and S. Kiriyama, Cellobiose is extensively digested in the small intestine by β-galactosidase in rats, Nutrition, 24(11-12), 1199 (2008).   DOI
18 G. Zhang, L. Li, J. Liu, J Cai, J. Fu, N. Li, H. Cao, H. Xu, Y. Zhang, and R. Cao, Comparing the metabolite components of Sichuan sun vinegar and other kinds of vinegar based on non-targeted metabolomic, LWT, 164, 113640 (2022).   DOI
19 N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, Autophagy fights disease through cellular self-digestion, Nature, 451(7182), 1069 (2008).   DOI
20 L. Yu, C. K. Mcphee, L. Zheng, G. A. Mard ones, Y. Rong, J. Peng, N. Mi, Y. Zhao, Z. Liu, F. Wan, D. W. Hailey, V. Oorschot, J. Klumperman, E. H. Baehrecke, and M. J. Lenardo, Termination of autophagy and reformation of lysosomes regulated by mTOR, Nature, 465(7300), 942 (2010).   DOI
21 N. Mizushima and M. Komatsu, Autophagy renovation of cells and tissues, Cell, 147(4), 728 (2011).   DOI
22 B. Levine, N. Mizushima, and H. W. Virgin, Autophagy in immunity and inflammation, Nature, 469(7330), 323 (2011).   DOI