DOI QR코드

DOI QR Code

오존수 처리가 버드나무(Salix koreensis) 삽수의 부정근 발생에 미치는 영향

Effect of Ozonated Water Soaking on Adventitious Root Formation of Willow (Salix koreensis) Cuttings

  • 투고 : 2022.01.07
  • 심사 : 2022.01.17
  • 발행 : 2022.01.31

초록

본 연구는 버드나무의 생물학적 녹화 공법시 삽수 발근의 효율을 높이기 위해 오존수 농도 및 처리시간을 구명하기 위해 수행되었다. 오존발생기를 사용하여 오존수 농도 1, 5, 10, 15, 20ppm에서 5분, 2시간 침지처리를 하여 주차별 지상부의 변화를 관찰하고 부정근 개수와 길이를 측정하였다. 그 결과, 20ppm의 오존수를 2시간 처리와 1ppm의 오존수를 5분 동안 처리하면 지상부에 영향을 미쳐잎이 고사하고, 부정근 발근이 이루어지지 않은 현상을 볼 수 있었다. 따라서 부정근의 외관, 개수, 길이 등을 고려해 볼때, 버드나무 삽수에서 부정근 발근과 측지 발생이 이루어진 조건은 오존수를 따라 5분은 10-15ppm, 2시간은 5ppm을 처리하는 것이 적합하다고 사료된다

To investigate the effects of ozonated water concentration and soaking time on adventitious root formation of willow, we studied the efficiency of root cuttings in the revegetation technology of biological engineering of willows. The ozonated water concentrations were used for 5 minutes and 2 hours at 1, 5, 10, 15, 20 ppm by soaking method and then the shoot characteristics were observed. The number and length of adventitious roots were determined. The results indicated that 20 ppm of ozonated water for 2 hours and 1 ppm of ozonated water for 5 minutes resulted in leaves turned wither away and no adventitious root production. Considering the appearance, number and length of the adventitious root, soaking willow cuttings into the ozonated water with dissolved ozone concentration, 5 ppm for 2 hours and 10-15 ppm for 5 minutes were suitable for generating adventitious roots.

키워드

과제정보

본 연구는 산림청(한국임업진흥원) 산림생명자원 소재발굴연구(R&D)개발 사업의 지원을 받아 수행된 연구임(2020202A00-2122-BA01).

참고문헌

  1. Argus G.W. 1986, The genus Salix (Salicaceae) in the southeastern United States. Systematic Botany Monographs 9:1-170. doi:10.2307/25027618
  2. Behzadi H.R., N. Samadi, A. Samadi, M. Safar, S. Shahi, and M. Qaryan 2012, The ozone application for control of the root knot nematode in tomato greenhouse. Elixir Agriculture 48:9387-9389.
  3. Burney J., L. Woltering, M. Burke, R. Naylor, and D. Pasternak 2010, Solar-powered drip irrigation enhances food security in the Sudano-Sahel. Proc Natl Acad U S A 107:1848-1853. doi:10.1073/pnas.0909678107
  4. Buwalda F., K.S. Kim, R. Frenck, B. Locker, and B.V.D. Berg-De Vos 1995, Effects of irrigation frequency and type of root medium and the growth of chrysanthemum cuttings. Acta Hort 401:193-200. https://doi.org/10.17660/actahortic.1995.401.23
  5. Carol R.J., S. Takeda, P. Linstead, M.C. Durrant, H. Kakesova, P. Derbyshire, S. Drea, V. Zarsky, and L. Dolan 2005, A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438:1013-1016. doi:10.1038/nature04198
  6. Cha D.S., J.H. Oh, B.Y. Ji, K.H. Cho, and H.J. Lee 2008, Development of the soil bioengineering techniques for restoring of degraded forest area (V)-pull-out resistance characteristics of shrubs' roots. J For Sci 24:111-118.
  7. Chae S.M., K.M. Ja, S.Y. Kim, and L.C. Heon 2020, Early growth response and nutrient absorption characteristics of willows (Salix sp.) treated with nitrogen source. J Korean Env Res Tech 23:63-79. doi:10.13087/kosert.2020.23.3.63
  8. Cho K.T., R.H. Jang, S.H. Lee, Y.S. Han, and Y.H. You 2013, Effects of global warming and environmental factors of light, soil moisture, and nutrient level on ecological niche of Quercus acutissima and Quercus variabilis. Korean J Ecology and Environment 46:429-439. doi:10.11614/KSL.2013.46.3.429
  9. Craker L.E. 1971, Ethylene production from ozone injured plants. Environmental Pollution(1970) 1:299-304. doi:10.1016/0013-9327(71)90022-X
  10. D'Odorico P., A. Bhattachan, K.F. Davis, S. Ravi, and C.W. Runyan 2013, Global desertification: drivers and feedbacks. Adv Water Resour 51:326-344. doi:10.1016/j.advwatres.2012.01.013
  11. de Sousa S.M., C.A. de Oliveira, D.L. Andrade, C.G. de Carvalho, V.P. Ribeiro, M.M. Pastina, I.E. Marriel, U.G. de Paula Lana, and E.A. Gomes 2021, Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. J Plant Growth Regul 40:867-877. doi:10.1007/s00344-020-10146-9
  12. Ebihara K., H. Stryczewska, T. Ikegami, F. Mitsugi, and J. Pawlat 2011, On-site ozone treatment for agricultural soil and related applications. Przeglad Elektrotechniczny 87:148-152.
  13. Edwards N.T. 1991, Root and soil respiration responses to ozone in Pinus taeda L. seedlings. New Phytol 118:315-321. doi:10.1111/j.1469-8137.1991.tb00983.x
  14. Gapper C., and L. Dolan 2006, Control of plant development by reactive oxygen species. Plant Physiol 141:341-345. doi:10.1104/pp.106.079079
  15. Gaspar T., C. Kevers, and J.F. Hausman 1997, Indissociable chief factors in the inductive phase of adventitious rooting. Biology of Root Formation and Development 65:55-63. doi:10.1007/978-1-4615-5403-5_9
  16. Gaspar T., O. Faivre-Rampant, C. Kevers, J. Dommes, and J.F. Hausman 2002, Auxins in the biology of roots. Plant roots: The hidden half, 3rd ed. Marcel Dekker, Inc., New York, pp 383-403.
  17. Grantz D., S. Gunn, and H.B. Vu 2006, O3 impacts on plant development: a meta-analysis of root/shoot allocation and growth. Plant Cell Environ 29:1193-1209. doi:10.1111/j.1365-3040.2006.01521.x
  18. Hausman J.F., D. Evers, C. Kevers, and T. Gaspar 1997, Conversion of putrescine to γ-aminobutyric acid, an essential pathway for root formation by poplar shoots in vitro. Biology of Root Formation and Development 65:133-139. doi:10.1007/978-1-4615-5403-5_21
  19. Heath R.L., and G.E. Taylor Jr 1997, Physiological processes and plant responses to ozone exposure. Forest Decline and Ozone 127:317-368. doi:10.1007/978-3-642-59233-1_10
  20. Iizuka S., and H. Saito 2016, Growth promotion of Komatsuna (Brassica rapa var. perviridis) by ozonated water supplied intermittently to underground roots. Plasma Med 6:255-264. doi:10.1615/PlasmaMed.2016018691
  21. Ishii M., V.P. Lam, K. Fujiwara, and J.S. Park 2021, Intermittent root flushing with ozonated water promotes growth of Japanese mustard spinach (Brassica rapa var. perviridis) grown in a nutrient film technique hydroponic culture-preliminary results. Ozone Sci Eng 1-9. doi:10.1080/01919512.2021.1967723
  22. Jeong S.H., and S.H. Lee 2020, Effects of windbreak forest according to tree species and planting methods based on wind tunnel experiments. Forest Sci Technol 16:188-194. doi:10.1080/21580103.2020.1823896
  23. Kim H.J., and J.H. Lee 1998, A study on the Salix's biotechnical application. Journal Korea Institute of Landscape Architecture 26:143-151.
  24. Kim H.J., and J.H. Lee 1999, A study on the selection of Salix live branches in the case of slope revegetation technology of biological engineering. J Korean Env Res & Reveg Tech 2:32-37.
  25. Kim T.W., J.W. Lee, J.M. Kim, G.Y. Kim, and J.H. Kim 2021, High power-density LDC design for ultra-compact electric vehicles. Trans Korean Inst Power Electron 26:199-204. doi:10.6113/TKPE.2021.26.3.199
  26. Kim W.S., B. Choi, M.K. Kim, S.H. Chae, and I.S. Kwak 2020, Expression of heat shock protein 70 gene and body color changes in non-biting midge larvae (Glyptotendipes tokunagai) effected by O3 treatment. Korean J Ecology and Environment 53:324-330. doi:10.11614/KSL.2020.53.4.324
  27. Kim Y.S., I.S. Park, A.Y. Kim, K.M. Jeon, Y.M. Seo, S.H. Choi, Y.J. Lee, H.C. Choi, D.H. Jeon, H.I. Kim, and S.D. Ha 2008, Application, utilization and management of ozone water in food manufacturing. J Fd Hyg Safety 23:98-107.
  28. Koseki S., and S. Isobe 2006, Effect of ozonated water treatment on microbial control and on browning of iceberg lettuce (Lactuca sativa L.). J Food Prot 69:154-160. doi:10.4315/0362-028X-69.1.154
  29. Krasuska U., and A. Gniazdowska 2015, ROS-RNS-Phytohormones network in root response strategy. Reactive Oxygen Species and Oxidative Damage in Plants Under Stress pp 321-339. doi:10.1007/978-3-319-20421-5_13
  30. Krasuska U., O. Andrzejczak, P. Staszek, W. Borucki, and A. Gniazdowska 2016, Toxicity of canavanine in tomato (Solanum lycopersicum L.) roots is due to alterations in RNS, ROS and auxin levels. Plant Physiol Biochem 103:84-95. doi:10.1016/j.plaphy.2016.03.005
  31. Kuzovkina Y.A., and M.F. Quigley 2005, Willows beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut 162:183-204. doi:10.1007/s11270-005-6272-5
  32. Kuzovkina Y.A., and T.A. Volk 2009, The characterization of willow (Salix L.) varieties for use in ecological engineering applications: co-ordination of structure, function and autecology. Ecol Eng 35:1178-1189. doi:10.1016/j.ecoleng.2009.03.010
  33. Lee I.S., P.H. Lee, S.G. Son, C.S. Kim, and K.H. Oh 2001, Distribution and community structure of Salix species along the environmental gradients in the Nam-River watershed. Korean J Ecol 24:289-296.
  34. Michels K., J. Lamers, and A. Buerkert 1998, Effects of windbreak species and mulching on wind erosion and millet yield in the Sahel. Exp Agric 34:449-464. doi:10.1017/S0014479798004050
  35. Mrak T., I. Straus, T. Grebenc, J. Gricar, Y. Hoshika, G. Carriero, E. Paoletti, and H. Kraigher 2019, Different belowground responses to elevated ozone and soil water deficit in three European oak species (Quercus ilex, Q. pubescens and Q. robur). Sci Total Environ 651:1310-1320. doi:10.1016/j.scitotenv.2018.09.246
  36. Ohashi-Kaneko K., M. Yoshii, T. Isobe, J.S. Park, K. Kurata, and K. Fujiwara 2009, Nutrient solution prepared with ozonated water does not damage early growth of hydroponically grown tomatoes. Ozone Sci Eng 31:21-27. doi:10.1080/01919510802587523
  37. Oosterhuis D.M., and D. Zhao 1994, Increased root length and branching in cotton by soil application of the plant growth regulator PGR-IV. Plant Soil 167:51-56. doi:10.1007/BF01587597
  38. Paoletti E., and N.E. Grulke 2005, Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. Environ Pollut 137:483-493. doi:10.1016/j.envpol.2005.01.035
  39. Park J.S., T. Isobe, S. Kusakari, and K. Fujiwara 2009, Promotion of adventitious roots in Chrysanthemum cuttings by soaking in ozonated water. Ozone Sci Eng 31:15-20. doi:10.1080/01919510802587143
  40. Pulford I.D., D. Riddell-Black, and C. Stewart 2002, Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. Int J Phytoremediation 4:59-72. doi:10.1080/15226510208500073
  41. Roy S., S. Labelle, P. Mehta, A. Mihoc, N. Fortin, C. Masson, R. Leblanc, G. Chateauneuf, C. Sura, C. Gallipeau, C. Olsen, S. Delisle, M. Labrecque, and C. W. Greer 2005, Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant Soil 272:277-290. doi:10.1007/s11104-004-5295-9
  42. Rubio J.L., and E. Bochet 1998, Desertification indicators as diagnosis criteria for desertification risk assessment in Europe. J Arid Environ 39:113-120. doi:10.1006/jare.1998.0402
  43. Sandermann Jr H. 1996, Ozone and plant health. Annu Rev Phytopathol 34:347-366. doi:10.1146/annurev.phyto.34.1.347
  44. Scagel C.F., and C.P. Andersen 1997, Seasonal changes in root and soil respiration of ozone-exposed ponderosa pine (Pinus ponderosa) grown in different substrates. The New Phytol 136:627-643. doi:10.1046/j.1469-8137.1997.00779.x
  45. Shan Y., Z. Feng, T. Izuta, M. Aoki, and T. Totsuka 1996, The individual and combined effects of ozone and simulated acid rain on growth, gas exchange rate and water-use efficiency of Pinus armandi Franch. Environ Pollut 91:355-361. doi:10.1016/0269-7491(95)00039-9
  46. Shili W., M. Yuping, H. Qiong, and W. Yinshun 2006, Coping strategies with desertification in China. Managing Weather and Climate Risks in Agriculture pp 317-341. doi:10.1007/978-3-540-72746-0_18
  47. Somiya I. 2004, Ozone Handbook. Japan Ozone Association, Tokyo, Japan.
  48. Stoltz E., and M. Greger 2002, Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271-280. doi:10.1016/S0098-8472(02)00002-3
  49. Strader L.C., G.L. Chen, and B. Bartel 2010, Ethylene directs auxin to control root cell expansion. Plant J 64:874-884. doi:10.1111/j.1365-313X.2010.04373.x
  50. Sudhakar N., D. Nagendra-Prasad, N. Mohan, and K. Murugesan 2008, A preliminary study on the effects of ozone exposure on growth of the tomato seedlings. Aust J Crop Sci 2:33-39.
  51. Vandecasteele B., E. Meers, P. Vervaeke, B. De Vos, P. Quataert, and F.M. Tack 2005, Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58:995-1002. doi:10.1016/j.chemosphere.2004.09.062
  52. Vendruscolo J., A.M. Perez Marin, E. dos Santos Felix, K.R. Ferreira, W.C.S. Cavalheiro, and I.M. Fernandes 2021, Monitoring desertification in semiarid Brazil: using the desertification degree index (DDI). Land Degrad Dev 32:684-698. doi:10.1002/ldr.3740
  53. Wang X., E. Agathokleous, L. Qu, M. Watanabe, and T. Koike 2016, Effects of CO2 and O3 on the interaction between root of woody plants and ectomycorrhizae. J Agric Meteorol 72:95-105. doi:10.2480/agrmet.D-14-00045
  54. Watson C., I.D. Pulford, and D. Riddell-Black 2003, Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix). Int J Phytoremediation 5:333-349. doi:10.1080/15226510309359041
  55. Wezel A., and T. Rath 2002, Resource conservation strategies in agro-ecosystems of semi-arid West Africa. J Arid Environ 51:383-400. doi:10.1006/jare.2001.0968
  56. Yang X., K. Zhang, B. Jia, and L. Ci 2005, Desertification assessment in China: An overview. J Arid Environ 63:517-531. doi:10.1016/j.jaridenv.2005.03.032
  57. Yergeau E., J. Tremblay, S. Joly, M. Labrecque, C. Maynard, F.E. Pitre, M. St-Arnaud, and C.W. Greer 2018, Soil contamination alters the willow root and rhizosphere metatranscriptome and the root-rhizosphere interactome. ISME J 12:869-884. doi:10.1038/s41396-017-0018-4
  58. Yun Y.H., G.R. Ahn, S.K. Yoon, H.H. Kim, S.Y. Son, and S.H. Kim 2016, New rust disease of Korean willow (Salix koreensis) caused by Melampsora yezoensis, unrecorded pathogen in Korea. Mycobiology 44:335-337. doi:10.5941/MYCO.2016.44.4.335