DOI QR코드

DOI QR Code

Determination of acoustic emission signal attenuation coefficient of concrete according to dry, saturation, and temperature condition

포화유무 및 온도조건에 따른 콘크리트 음향방출 신호 감쇠계수 결정

  • Lee, Hang-Lo (Disposal Performance Validation Research Division, Korea Atomic Energy Research Institute) ;
  • Hong, Chang-Ho (Disposal Performance Validation Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Jin-Seop (Disposal Performance Validation Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Ji-Won (Disposal Performance Validation Research Division, Korea Atomic Energy Research Institute)
  • 이항로 (한국원자력연구원 처분성능실증연구부) ;
  • 홍창호 (한국원자력연구원 처분성능실증연구부) ;
  • 김진섭 (한국원자력연구원 처분성능실증연구부) ;
  • 김지원 (한국원자력연구원 처분성능실증연구부)
  • Received : 2021.09.17
  • Accepted : 2021.10.25
  • Published : 2022.01.31

Abstract

This study carried out the laboratory tests for AE signal attenuation to determine the attenuation coefficient (α) of silo concrete in Gyeongju low and intermediate-level disposal environments. The concrete samples were prepared by satisfying the concrete mixing ratio used in the Gyeongju disposal silo, and these samples were additionally exposed depending on the temperature conditions and saturation and, dry condition. As a result of attenuation tests according to the transmission distance on three concrete specimens for each disposal condition, the AE amplitude and absolute energy measured on the saturated concrete were higher than that of the dry concrete in the initial range of the signal transmission distance, but the α of the saturated concrete was higher than that of the dry concrete. Regardless of the saturation and dry conditions, the α tended to decrease as the temperature increases. The α had a more major influence on the saturation and dry condition than the temperature condition, which means that the saturation and dry condition is the main consideration in measuring the signal attenuation of a concrete disposal structure. The α of concrete in the disposal environment expect to be used to predict the integrity of silos concrete in Gyeongju low and intermediate-level disposal environments by estimating the actual AE parameter values at the location of cracks and to determine the optimum location of sensors.

본 연구는 경주 중·저준위 지하 처분환경에서의 사일로 콘크리트의 음향방출(AE) 신호 감쇠계수(α)를 결정하기 위해 신호감쇠 실험을 수행하였다. 활용된 시료들은 경주 중·저준위 처분장 사일로에 사용된 콘크리트 배합비로 제작하였으며 28일간 수중 양생 후 처분환경에 맞도록 온도 및 포화유무에 따라 추가적으로 노출시켰다. 처분조건 별 각 3개씩의 공시체에 대하여 신호전달거리에 따른 AE 신호를 측정한 결과, 초기구간에서는 포화콘크리트의 AE 진폭과 절대에너지가 건조콘크리트의 경우보다 더 높게 나타났지만, α는 포화콘크리트의 경우가 더 높게 산정되었다. 또한, 포화유무와 상관없이 온도가 증가함에 따라 α는 감소하는 경향을 보였다. α는 온도조건보다는 포화유무에 따른 영향이 큰 것으로 분석되었으며, 이는 콘크리트 처분구조물의 감쇠신호 측정 시 포화여부를 고려한 판단이 중요하다는 것을 의미한다. 처분환경에서의 콘크리트 α는 균열이 발생한 위치에서의 실제 AE 특성 파라미터 값을 추정함으로써 경주 중·저준위 처분환경에서 사일로 콘크리트의 건전성을 예측하고 센서의 최적 배치를 결정하는 데 도움이 될 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국연구재단의 원자력 연구개발사업(NRF-2021M2C9A1018633)의 지원으로 수행되었습니다. 이에 감사드립니다.

References

  1. Backblom, G. (2008), Excavation damage and disturbance in crystalline rock - results from experiments and analyses, TR-08-08, SKB, pp. 1-86.
  2. Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range", The Journal of the Acoustical Society of America, Vol. 28, No. 2, pp. 179-191. https://doi.org/10.1121/1.1908241
  3. Carpinteri, A., Lacidogna, G., Pugno, N. (2007), "Structural damage diagnosis and life-time assessment by acoustic emission monitoring", Engineering Fracture Mechanics, Vol. 74, No. 1-2, pp. 273-289. https://doi.org/10.1016/j.engfracmech.2006.01.036
  4. Culjat, M.O., Goldenberg, D., Tewari, P., Singh, R.S. (2010), "A review of tissue substitutes for ultrasound imaging", Ultrasound in Medicine and Biology, Vol. 36, No. 6, pp. 861-873. https://doi.org/10.1016/j.ultrasmedbio.2010.02.012
  5. Gaydecki, P., Burdekin, F., Damaj, W., John, D.G. (1992), "The propagation and attenuation of medium-frequency ultrasonic waves in concrete: a signal analytical approach", Measurement Science and Technology, Vol. 3, No. 1, pp. 126-134. https://doi.org/10.1088/0957-0233/3/1/018
  6. Jakevicius, L., Demcenko, A. (2008), "Ultrasound attenuation dependence on air temperature in closed chambers", Ultrasonic and Acoustic Measurements, Vol. 63, No. 1, pp. 18-22.
  7. Johnston, D.H., Toksoz, M.N., Timur, A. (1979), "Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms", Geophysics, Vol. 44, No. 4, pp. 691-711. https://doi.org/10.1190/1.1440970
  8. Kim, J. (2013), Quantitative damage assessment of in-situ rock mass using acoustic emission technique, Ph.D. Thesis, KAIST, pp. 1-244.
  9. Kim, J.S., Kim, G.Y., Baik, M.H., Finsterle, S., Cho, G.C. (2019), "A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission", Geomechanics and Engineering, Vol. 18, No. 1, pp. 11-20. https://doi.org/10.12989/gae.2019.18.1.011
  10. Kim, Y.H., Lee, S., Kim, H.C. (1991), "Attenuation and dispersion of elastic waves in multi-phase materials", Journal of Physics D: Applied Physics, Vol. 24, No. 10, pp. 1722-1728. https://doi.org/10.1088/0022-3727/24/10/005
  11. Landis, E.N., Shah, S.P. (1995), "Frequency-dependent stress wave attenuation in cement-based materials", Journal of Engineering Mechanics, Vol. 121, No. 6, pp. 737-743. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:6(737)
  12. Maillet, E., Godin, N., R'Mili, M., Reynaud, P., Fantozzi, G., Lamon, J. (2014), Real-time evaluation of energy attenuation: A novel approach to acoustic emission analysis for damage monitoring of ceramic matrix composites. Journal of the European Ceramic Society, Vol. 34, No. 7, pp. 1673-1679. https://doi.org/10.1016/j.jeurceramsoc.2013.12.041
  13. Mavko, G.M., Nur, A. (1979), "Wave attenuation in partially saturated rocks", Geophysics, Vol. 44, No. 2, pp. 161-178. https://doi.org/10.1190/1.1440958
  14. Muller, T.M., Gurevich, B., Lebedev, M. (2010), "Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review", Geophysics, Vol. 75, No. 5, pp. 75A147-75A164. https://doi.org/10.1190/1.3463417
  15. O'Connell, R.J., Budiansky, B. (1977), "Viscoelastic properties of fluid-saturated cracked solids", Journal of Geophysical Research, Vol. 82, No. 36, pp. 5719-5735. https://doi.org/10.1029/JB082i036p05719
  16. Otsuki, N., Iwanami, M., Miyazato, S., Hara, N. (2000), "Influence of aggregates on ultrasonic elastic wave propagation in concrete", Non-Destructive Testing in Civil Engineering, Elsevier, Amsterdam, pp. 313-322.
  17. Philippidis, T.P., Aggelis, D.G. (2005), "Experimental study of wave dispersion and attenuation in concrete", Ultrasonics, Vol. 43, No. 7, pp. 584-595. https://doi.org/10.1016/j.ultras.2004.12.001
  18. Rodriguez, P., Celestino, T.B. (2019), "Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks", Engineering Fracture Mechanics, Vol. 210, pp. 54-69. https://doi.org/10.1016/j.engfracmech.2018.06.027
  19. Santamarina, J.C., Klein, K.A., Fam, M.A. (2001), Soils and waves, John Wiley & Sons, New York, pp. 1-512.
  20. Shah, A.A., Ribakov, Y. (2010), "Effectiveness of nonlinear ultrasonic and acoustic emission evaluation of concrete with distributed damages", Materials & Design, Vol. 31, No. 8, pp. 3777-3784. https://doi.org/10.1016/j.matdes.2010.03.020
  21. Wachtman, J.B., Cannon, W.R., Matthewson, M.J. (2009), Mechanical properties of ceramics, John Wiley & Sons, New York, pp. 1-496.
  22. Wang, X., Wang, E., Liu, X. (2019), "Damage characterization of concrete under multi-step loading by integrated ultrasonic and acoustic emission techniques", Construction and Building Materials, Vol. 221, No. 10, pp. 678-690. https://doi.org/10.1016/j.conbuildmat.2019.06.105
  23. Wu, C., Gong, F., Luo, Y. (2021), "A new quantitative method to identify the crack damage stress of rock using AE detection parameters", Bulletin of Engineering Geology and the Environment, Vol. 80, No. 1, pp. 519-531. https://doi.org/10.1007/s10064-020-01932-6
  24. Yang, J., Mu, Z.L., Yang, S.Q. (2020), "Experimental study of acoustic emission multi-parameter information characterizing rock crack development", Engineering Fracture Mechanics, Vol. 232, No. 1, 107045. https://doi.org/10.1016/j.engfracmech.2020.107045
  25. Zhao, X.G., Cai, M., Wang, J., Ma, L.K. (2013), "Damage stress and acoustic emission characteristics of the Beishan granite", International Journal of Rock Mechanics and Mining Sciences, Vol. 64, pp. 258-269. https://doi.org/10.1016/j.ijrmms.2013.09.003