DOI QR코드

DOI QR Code

Risk analysis and countermeasures for subsea tunnel planning of national road 77 construction work between Abhae and Hwawon

압해-화원 간 국도77호선 건설공사 해저터널 계획을 위한 리스크 분석 및 대책방안

  • Kim, Young-Joon (Geotechnical Engineering Dept., TESO ENGINEERING Co., Ltd.) ;
  • Kim, Zu-Cheol (Civil Design Dept., LOTTE Engineering & Construction) ;
  • Lee, Jae-Sung (Civil Design Dept., LOTTE Engineering & Construction)
  • 김영준 ((주)태조엔지니어링 지반부) ;
  • 김주철 (롯데건설주식회사 토목설계팀) ;
  • 이재성 (롯데건설주식회사 토목설계팀)
  • Received : 2021.09.07
  • Accepted : 2021.11.26
  • Published : 2022.01.31

Abstract

Recently, tunnel technology in Korea has shown various achievements such as long tunnel and large section by tunnel construction using TBM in Korea and abroad. Especially subsea tunnels are frequently designed and constructed. The Ga-deok subsea tunnel was completed in December 2010, and the Incheon North Port Tunnel was opened and operated in 2017, and the Bo-ryeong subsea tunnel between Dae-cheon Port and Won-san Island will be completed in 2021. In foreign countries, many subsea tunnels have been constructed and operated in such as Norway and Japan. The main technical problem in the construction of subsea tunnel is to secure stability due to high water pressure conditions and large-scale seawater inflow in fault zones and weak zones. In this paper, various risk factors and solutions are described in the subsea tunnel planning of national road 77 construction work between Abhae and Hwawon.

최근 국내 터널기술은 국내·외에서 TBM 장비를 활용한 터널 시공 등으로 장대화 및 대단면화 등 다양한 성과를 나타내고 있으며, 특히 하저 및 해저터널이 빈번하게 설계되며, 시공 중에 있다. 가덕 해저터널(3.7 km)이 2010년 12월에 개통되었고 인천 북항터널(5.4 km)은 2017년에 개통되어 운영 중에 있으며 대천항~원산도 간 보령해저터널(6.29 km)이 2021년에 준공될 예정이다. 해외의 경우도 노르웨이, 일본 등의 국가에서 다수의 해저터널이 시공되어 운영 중인 것으로 알려져 있다. 해저터널 건설을 위하여 해저터널과 육상터널의 차이점에 대하여 분석하였으며, 해저터널과 육상터널을 비교하여 단층대와 연약대에서 고수압 조건과 대규모 해수 유입으로 인한 안정성 확보 등의 문제점에 대하여 언급하였다. 본 논문에서는 압해-화원 간 국도77호선 건설공사의 해저터널 계획 시 검토하였던 다양한 위험요소와 이를 극복하기 위해 설계 시 반영하였던 대책방안에 대하여 기술하였다.

Keywords

Acknowledgement

본 연구는 압해~화원 간 국도77호선 도로건설공사 사업의 일환으로 수행되었습니다. 이에 감사드립니다.

References

  1. Holmoy, K.H., Nilsen, B. (2014), "Significance of geological parameters for predicting water inflow in hard rock tunnels", Rock Mechanics and Rock Engineering, Vol. 47, No. 3, pp. 853-868. https://doi.org/10.1007/s00603-013-0384-9
  2. Hong, E.S., Shin, H.S., Park, C., Kim, H.M., Park, E.S. (2008), "New horizontal pre-drainage system in subsea tunnelling", Tunnel and Underground Space, Vol. 18, No. 1, pp. 10-19.
  3. Jang, T.W. (1997), A study on the geological structure of the crystallite rock distribution area, Korea Atomic Energy Research Institute, pp. 173-182.
  4. Kim, Y.J., Lim, G., Park, M.S., Lee, J.S., Kim, Z.C. (2021), "Technical consideration and design items to overcome risk factors when planning a subsea tunnel", Proceedings of the KTA 2021 Annual Spring Conference, Seoul, pp. 87-88.
  5. Lee, B.J. (2006), "Suggestions regarding fault classification for civil engineers", Magazine of Korean Tunnelling and Underground Space Association, Vol. 8, No. 2, pp. 68-76.
  6. Lee, B.J., Cheong, J.Y. (2007), "What is the faults?", Proceedings of the KGS Fall National Conference 2007, Busan, pp. 127-137.
  7. Ministry of the Interior and Safety (2019), Flood protection standards to prevent flooding of underground spaces, pp. 5.
  8. Park, E.S., Shin, H.S. (2007), "Technical status of undersea tunnel - domestic and foreign status and characteristics", Magazine of Korean Tunnelling and Underground Space Association, Vol. 9, No. 4, pp. 80-90.
  9. Park, E.S., Shin, H.S., Shin, Y.H., Kim, T.G. (2009), "Management of risk scenarios based on ground conditions under construction of a subsea tunnel", Tunnel and Underground Space, Vol. 19, No. 4, pp. 275-286.
  10. Pusch, R. (1995), Rock mechanics on a geological base, Elsevier, Amsterdam, pp. 498.