DOI QR코드

DOI QR Code

A Graphene-electrode-based Infrared Fresnel Lens with Multifocal Function

다초점 기능을 갖는 그래핀 전극 기반 적외선 프레넬 렌즈

  • Nam, Guk Hyun (Division of Energy and Optical Technology Convergence, Cheongju University) ;
  • Lee, Jong-Kwon (Division of Energy and Optical Technology Convergence, Cheongju University)
  • 남국현 (청주대학교 에너지.광기술융합학부 광기술에너지융합 전공) ;
  • 이종권 (청주대학교 에너지.광기술융합학부 광기술에너지융합 전공)
  • Received : 2021.12.16
  • Accepted : 2022.01.10
  • Published : 2022.02.25

Abstract

We study through computational simulation the focal performance of an infrared (IR) Fresnel lens, composed of a multilayer-graphene zone plate formed under a graphene electrode. Here the Fermi level EF of the patterned multilayer graphene is adjusted by the overlying graphene electrode. The Fresnel lens effect, with respect to the reflectance contrast between the graphene electrode and the 8-layer graphene zone plate placed on a glass substrate, has been analyzed over a broad wavelength range from 4 to 30 ㎛. As the optimal wavelength of 8 ㎛ (considering the reflectance and the reflectance-contrast ratio) is incident upon the Fresnel lens with a focal length of 240 ㎛, the focal intensity is enhanced by a factor of 4.3 as the EF of multilayer graphene increases from 0.4 eV to 1.6 eV, and is improved by a factor of 5.8 as the number of graphene layers increases from two to eight. As a result, an all-graphene-based IR Fresnel zone-plate lens, exhibiting multifocal function (240 ㎛ and 360 ㎛) according to the selected EF, is proposed as an ultrathin lens platform.

그래핀 전극 아래에 놓인 다층 그래핀 존 플레이트로 구성된 적외선 프레넬 렌즈의 초점 성능을 전산모사를 통해 조사한다. 여기서 패턴된 다층 그래핀의 페르미 에너지 준위(EF)는 그 위에 놓인 그래핀 전극에 의해 조절된다. 4 ㎛에서 30 ㎛까지의 광대역 파장에서 유리 기판 위에 놓인 8층 그래핀 존 플레이트와 그래핀 전극의 반사도 대비비에 따른 프레넬 렌즈 효과를 분석하였다. 반사도와 반사도 대비비를 고려한 최적 파장인 8 ㎛ 입사파가 초점거리 240 ㎛인 프레넬 렌즈에 입사 시, 다층 그래핀의 EF가 0.4 eV에서 1.6 eV로 증가함에 따라 초점 세기가 4.3배, 그래핀 층수가 2층에서 8층으로 증가함에 따라 5.8배 강화되었다. 이를 통해 인가된 EF에 따라서 다중 초점(240 ㎛ 및 360 ㎛) 성능을 보이는 그래핀만으로 구성된 IR 프레넬 렌즈 구조를 초박형 렌즈 플랫폼으로 제안한다.

Keywords

Acknowledgement

이 논문은(2020-2021)학년도에 청주대학교 산업과학연구소가 지원한 학술연구조성비(특별연구과제)에 의해 연구되었음.

References

  1. X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, "Graphene-based ultrathin flat lenses," ACS Photonics 2, 200-207 (2015). https://doi.org/10.1021/ph500197j
  2. M. Meema, S. Banerjia, A. Majumdera, F. G. Vasquezb, B. Sensale-Rodrigueza, and R. Menona, "Broadband lightweight flat lenses for long-wave infrared imaging," Proc. Natl. Acad. Sci. U. S. A. 116, 21375-21378 (2019). https://doi.org/10.1073/pnas.1908447116
  3. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett. 12, 4932-4936 (2012). https://doi.org/10.1021/nl302516v
  4. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, "Two-dimensional material nanophotonics," Nat. Photonics 8, 899-907 (2014). https://doi.org/10.1038/nphoton.2014.271
  5. Y. Zhang, H. An, D. Zhang, G. Cui, and X. Ruan, "Diffraction theory of high numerical aperture subwavelength circular binary phase Fresnel zone plate," Opt. Express 22, 27425-27436 (2014). https://doi.org/10.1364/OE.22.027425
  6. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, "A super-oscillatory lens optical microscope for subwavelength imaging," Nat. Mater. 11, 432-435 (2012). https://doi.org/10.1038/nmat3280
  7. Y. Fu, W. Zhou, and L. E. N. Lim, "Near-field behavior of zone-plate-like plasmonic nanostructures," J. Opt. Soc. Am. A 25, 238-249 (2008). https://doi.org/10.1364/JOSAA.25.000238
  8. M. Ferstl and A.-M. Frisch, "Static and dynamic Fresnel zone lenses for optical interconnections," J. Mod. Opt. 43, 1451-1462 (1996). https://doi.org/10.1080/09500349608232817
  9. K. Kodate, E. Tokunaga, Y. Tatuno, J. Chen, and T. Kamiya, "Efficient zone plate array accessor for optoelectronic integrated circuits: design and fabrication," Appl. Opt. 29, 5115-5119 (1990). https://doi.org/10.1364/AO.29.005115
  10. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys. 81, 109-162 (2009). https://doi.org/10.1103/RevModPhys.81.109
  11. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, "Gate-variable optical transitions in graphene," Science 320, 206-209 (2008). https://doi.org/10.1126/science.1152793
  12. S. Deng, A. K. Yetisen, K. Jiang, and H. Butt, "Computational modelling of a graphene Fresnel lens on different substrates," RSC Adv. 4, 30050-30058 (2014). https://doi.org/10.1039/C4RA03991B
  13. S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavierd, and A. K. Yetisene, "Graphene nanoribbon based plasmonic Fresnel zone plate lenses," RSC Adv. 7, 16594-16601 (2017). https://doi.org/10.1039/C6RA27942B
  14. S. Park, G. Lee, B. Park, Y. Seo, C. B. Park, Y. T. Chun, C. Joo, J. Rho, J. M. Kim, J. Hone, and S. C. Jun, "Electrically focustuneable ultrathin lens for high-resolution square subpixels," Light Sci. Appl. 9, 98 (2020). https://doi.org/10.1038/s41377-020-0329-5
  15. C. Damgaard-Carstensen, M. Thomaschewski, F. Ding, and S. I. Bozhevolnyi, "Electrical tuning of Fresnel lens in reflection," ACS Photonics 8, 1576-1581 (2021). https://doi.org/10.1021/acsphotonics.1c00520
  16. G. W. Hanson, "Dyadic Green's functions and guided surface waves for a surface conductivity," J. Appl. Phys. 103, 064302 (2008). https://doi.org/10.1063/1.2891452
  17. K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, "Optical spectroscopy of graphene: from the far infrared to the ultraviolet," Solid State Commun. 152, 1341-1349 (2012). https://doi.org/10.1016/j.ssc.2012.04.064
  18. N. M. R. Peres, "The transport properties of graphene: an introduction," Rev. Mod. Phys. 82, 2673-2700 (2010). https://doi.org/10.1103/RevModPhys.82.2673
  19. H. S. Skulason, P. E. Gaskell, and T. Szkopek, "Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers," Nanotechnology 21, 295709 (2010). https://doi.org/10.1088/0957-4484/21/29/295709
  20. Ansys-Lumerical, "FDTD solutions," https://www.lumerical.com/products/fdtd/ (Accessed date: December 10, 2021).
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, USA, 1985), Volume 2.