Browse > Article
http://dx.doi.org/10.3807/KJOP.2022.33.1.028

A Graphene-electrode-based Infrared Fresnel Lens with Multifocal Function  

Nam, Guk Hyun (Division of Energy and Optical Technology Convergence, Cheongju University)
Lee, Jong-Kwon (Division of Energy and Optical Technology Convergence, Cheongju University)
Publication Information
Korean Journal of Optics and Photonics / v.33, no.1, 2022 , pp. 28-34 More about this Journal
Abstract
We study through computational simulation the focal performance of an infrared (IR) Fresnel lens, composed of a multilayer-graphene zone plate formed under a graphene electrode. Here the Fermi level EF of the patterned multilayer graphene is adjusted by the overlying graphene electrode. The Fresnel lens effect, with respect to the reflectance contrast between the graphene electrode and the 8-layer graphene zone plate placed on a glass substrate, has been analyzed over a broad wavelength range from 4 to 30 ㎛. As the optimal wavelength of 8 ㎛ (considering the reflectance and the reflectance-contrast ratio) is incident upon the Fresnel lens with a focal length of 240 ㎛, the focal intensity is enhanced by a factor of 4.3 as the EF of multilayer graphene increases from 0.4 eV to 1.6 eV, and is improved by a factor of 5.8 as the number of graphene layers increases from two to eight. As a result, an all-graphene-based IR Fresnel zone-plate lens, exhibiting multifocal function (240 ㎛ and 360 ㎛) according to the selected EF, is proposed as an ultrathin lens platform.
Keywords
Fresnel zone plate; Graphene; Infrared range; Multifocal function;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, "Optical spectroscopy of graphene: from the far infrared to the ultraviolet," Solid State Commun. 152, 1341-1349 (2012).   DOI
2 H. S. Skulason, P. E. Gaskell, and T. Szkopek, "Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers," Nanotechnology 21, 295709 (2010).   DOI
3 F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett. 12, 4932-4936 (2012).   DOI
4 M. Meema, S. Banerjia, A. Majumdera, F. G. Vasquezb, B. Sensale-Rodrigueza, and R. Menona, "Broadband lightweight flat lenses for long-wave infrared imaging," Proc. Natl. Acad. Sci. U. S. A. 116, 21375-21378 (2019).   DOI
5 Y. Zhang, H. An, D. Zhang, G. Cui, and X. Ruan, "Diffraction theory of high numerical aperture subwavelength circular binary phase Fresnel zone plate," Opt. Express 22, 27425-27436 (2014).   DOI
6 M. Ferstl and A.-M. Frisch, "Static and dynamic Fresnel zone lenses for optical interconnections," J. Mod. Opt. 43, 1451-1462 (1996).   DOI
7 X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, "Graphene-based ultrathin flat lenses," ACS Photonics 2, 200-207 (2015).   DOI
8 F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, "Gate-variable optical transitions in graphene," Science 320, 206-209 (2008).   DOI
9 S. Park, G. Lee, B. Park, Y. Seo, C. B. Park, Y. T. Chun, C. Joo, J. Rho, J. M. Kim, J. Hone, and S. C. Jun, "Electrically focustuneable ultrathin lens for high-resolution square subpixels," Light Sci. Appl. 9, 98 (2020).   DOI
10 Ansys-Lumerical, "FDTD solutions," https://www.lumerical.com/products/fdtd/ (Accessed date: December 10, 2021).
11 K. Kodate, E. Tokunaga, Y. Tatuno, J. Chen, and T. Kamiya, "Efficient zone plate array accessor for optoelectronic integrated circuits: design and fabrication," Appl. Opt. 29, 5115-5119 (1990).   DOI
12 F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, "Two-dimensional material nanophotonics," Nat. Photonics 8, 899-907 (2014).   DOI
13 E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, "A super-oscillatory lens optical microscope for subwavelength imaging," Nat. Mater. 11, 432-435 (2012).   DOI
14 Y. Fu, W. Zhou, and L. E. N. Lim, "Near-field behavior of zone-plate-like plasmonic nanostructures," J. Opt. Soc. Am. A 25, 238-249 (2008).   DOI
15 A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys. 81, 109-162 (2009).   DOI
16 S. Deng, A. K. Yetisen, K. Jiang, and H. Butt, "Computational modelling of a graphene Fresnel lens on different substrates," RSC Adv. 4, 30050-30058 (2014).   DOI
17 S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavierd, and A. K. Yetisene, "Graphene nanoribbon based plasmonic Fresnel zone plate lenses," RSC Adv. 7, 16594-16601 (2017).   DOI
18 C. Damgaard-Carstensen, M. Thomaschewski, F. Ding, and S. I. Bozhevolnyi, "Electrical tuning of Fresnel lens in reflection," ACS Photonics 8, 1576-1581 (2021).   DOI
19 G. W. Hanson, "Dyadic Green's functions and guided surface waves for a surface conductivity," J. Appl. Phys. 103, 064302 (2008).   DOI
20 N. M. R. Peres, "The transport properties of graphene: an introduction," Rev. Mod. Phys. 82, 2673-2700 (2010).   DOI
21 E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, USA, 1985), Volume 2.