DOI QR코드

DOI QR Code

Comparative Study of Optimization Algorithms for Designing Optimal Aperiodic Optical Phased Arrays for Minimal Side-lobe Levels

비주기적 광위상배열에서 Side-lobe Level이 최소화된 구조 설계를 위한 최적화 알고리즘의 비교 연구

  • Received : 2021.11.24
  • Accepted : 2021.12.22
  • Published : 2022.02.25

Abstract

We have investigated the optimal design of an aperiodic optical phased array (OPA) for use in light detection and ranging applications. Three optimization algorithms - particle-swarm optimization (PSO), a genetic algorithm (GA), and a pattern-search algorithm (PSA) - were employed to obtain the optimal arrangement of optical antennas comprising an OPA. The optimization was performed to obtain the minimal side-lobe level (SLL) of an aperiodic OPA at each steering angle, using the three optimization algorithms. It was found that PSO and GA exhibited similar results for the SLL of the optimized OPA, while the SLL obtained by PSA showed somewhat different features from those obtained by PSO and GA. For an OPA optimized at a steering angle <45°, the SLL value averaged over all steering angles increased as the angle of optimization decreased. However, when the angle of optimization was larger than 45°, low average SLL values of <13 dB were obtained for all three optimization algorithms. This implies that an OPA with high signal quality can be obtained when the arrangement of the optical antennas is optimized at a large steering angle.

본 연구에서는 자율주행차의 라이다 센서용 광위상배열(optical phased array, OPA)에서 우수한 신호 품질을 얻을 수 있는 방법에 대해 조사하였다. OPA를 구성하는 광 안테나가 주기적으로 배치되어 있는 경우에는 grating lobe의 형성으로 인해 빔 조향의 범위가 제한된다. 광 안테나가 비주기적으로 배치된 OPA에서는 한 개의 main lobe만 형성되어 넓은 조향 범위가 가능하지만 side lobe에 의한 잡음의 영향으로 신호 품질이 저하된다. 본 논문에서는 이러한 비주기적인 OPA에서 발생하는 잡음을 최소화하고 신호 품질을 향상시키기 위한 최적화 연구를 수행한 결과를 보고한다. 최적화를 위한 목적 함수로는 side-lobe level (SLL)을 이용하였고, SLL이 가장 낮은 안테나 배열을 구하기 위한 최적화 기법으로는 입자 군집 최적화(particle-swarm optimization, PSO), 유전 알고리즘(genetic algorithm, GA), 패턴 검색 알고리즘(pattern-search algorithm, PSA) 등을 적용하였다. 128 채널의 광 안테나 배치로 이루어진 비주기적 OPA에서 위 3가지 최적화 기법을 적용하여 결과를 비교하였다. 전반적으로 PSO와 GA는 서로 유사한 최적화 결과를 보였고, PSA는 이와는 약간 차별적인 특성을 보였다. 최적화가 이루어진 각도가 45도보다 작을 때에는 최적화 각도가 작을수록 모든 조향 각도에서의 평균적인 SLL 값이 증가하는 경향을 보였지만, 최적화가 이루어진 각도가 45도 이상일 경우에는 최적화 알고리즘에 관계없이 -13 dB 이하의 평균 SLL 값을 얻을 수 있었다. 본 연구를 통해 비주기적인 OPA에서 고품질의 신호를 얻기 위한 최적의 안테나 배열을 구하는 데 있어서 PSO, GA, PSA의 최적화 알고리즘이 유용하게 활용될 수 있음을 보였다.

Keywords

Acknowledgement

본 연구는 2021년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원(P0008458, 2021년 산업혁신인재성장지원사업)과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2019R1A2C1010160).

References

  1. M. J. R. Heck, "Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering," Nanophotonics 6, 93-107 (2017). https://doi.org/10.1515/nanoph-2015-0152
  2. W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, "Heterogeneous silicon photonics sensing for autonomous cars," Opt. Express 27, 3642-3663 (2019). https://doi.org/10.1364/oe.27.003642
  3. Y. Guo, Y. Guo, C. Li, H. Zhang, X. Zhou, and L. Zhang, "Integrated optical phased arrays for beam forming and steering," Appl. Sci. 11, 4017 (2021). https://doi.org/10.3390/app11094017
  4. C.-P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chang, A. D. Moore, and V. Donzella, "A review and perspective on optical phased array for automotive LiDAR," J. Sel. Top. Quantum Electron. 27, 8300416 (2021).
  5. K. V. Acoleyen, W. Bogaerts, J. Jagerska, N. L. Thomas, R. Houdre, and R. Baets, "Off-chip beam steering with a onedimensional optical phased array on silicon-on-insulator," Opt. Lett. 34, 1477-1479 (2009). https://doi.org/10.1364/OL.34.001477
  6. A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, "Integrated phased array for wide-angle beam steering," Opt. Lett. 39, 4575-4578 (2014). https://doi.org/10.1364/ol.39.004575
  7. J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, "Fully integrated hybrid silicon two dimensional beam scanner," Opt. Express 23, 5861-5874 (2015). https://doi.org/10.1364/OE.23.005861
  8. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, "Coherent solid-state LIDAR with silicon photonic optical phased arrays," Opt. Lett. 42, 4091-4094 (2017). https://doi.org/10.1364/OL.42.004091
  9. S.-H. Kim, J.-B. You, Y.-G. Ha, G. Kang, D.-S. Lee, H. Yoon, D.-E. Yoo, D.-W. Lee, K. Yu, C.-H. Youn, and H.-H. Park, "Thermo-optic control of the longitudinal radiation angle in a silicon-based optical phased array," Opt. Lett. 44, 411-414 (2019). https://doi.org/10.1364/OL.44.000411
  10. K. Han, V. Yurlov, and N. E. Yu, "Highly directional waveguide grating antenna for optical phased array," Curr. Appl. Phys. 18, 824-828 (2018). https://doi.org/10.1016/j.cap.2018.04.004
  11. D.-J. Seo and H.-Y. Ryu, "Accurate simulation of a shallowetched grating antenna on silicon-on-insulator for optical phased array using finite-difference time-domain method," Curr. Opt. Photonics 3, 522-530 (2019). https://doi.org/10.3807/COPP.2019.3.6.522
  12. C.-S. Im, S.-M. Kim, K.-P. Lee, S.-H. Ju, J.-H. Hong, S.-W. Woon, T. Kim, E.-S. Lee, B. Bhandari, C. Zhou, S.-Y. Ko, Y.- H. Kim, M.-C. Oh, and S.-S. Lee, "Hybrid integrated silicon nitride-polymer optical phased array for efficient light detection and ranging," J. Lightwave Technol. 39, 4402-4409 (2021). https://doi.org/10.1109/JLT.2021.3070386
  13. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, "Large-scale nanophotonic phased array," Nature 493, 195-199 (2013). https://doi.org/10.1038/nature11727
  14. B.-W. Yoo, M. Megens, T. Sun, W. Yang, C. J. Chang-Hasnain, D. A. Horsley, and M. C. Wu, "A 32 × 32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors," Opt. Express 22, 19029-19039 (2014). https://doi.org/10.1364/OE.22.019029
  15. H. Zhang, Z. Zhang, J. Lv, C. Peng, and W. Hu, "Fast beam steering enabled by a chip-scale optical phased array with 8 × 8 elements," Opt. Commun. 461, 125267 (2020). https://doi.org/10.1016/j.optcom.2020.125267
  16. C. Rogers, A. Y. Plggott, D. J. Thomson, R. F. Wlser, I. E. Opris, S. A. Fortune, A. J. Compston, A. Gondarenko, F. Meng, X. Chen, G. T. Reed, and R. Nicolaescu, "Universal 3D imaging sensor on a silicon photonics platform," Nature 590, 256-261 (2021). https://doi.org/10.1038/s41586-021-03259-y
  17. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Freshali, and H. Rong, "High-resolution aliasing-free optical beam steering," Optica 3, 887-890 (2016). https://doi.org/10.1364/OPTICA.3.000887
  18. L. H. Gabrielli and H. E. Hernandez-Figueroa, "Aperiodic antenna array for secondary lobe suppression," IEEE Photonics Technol. Lett. 28, 209-212 (2016). https://doi.org/10.1109/LPT.2015.2492419
  19. T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, "Sparse aperiodic arrays for optical beam forming and LIDAR," Opt. Express 25, 2511-2528 (2017). https://doi.org/10.1364/OE.25.002511
  20. D. Zhang, F. Zhang, and S. Pan, "Grating-lobe-suppressed optical phased array with optimized element distribution," Opt. Commun. 419, 47-52 (2018). https://doi.org/10.1016/j.optcom.2018.03.007
  21. D. Zhuang, L. Zhang, X. Han, Y. Li, Y. Li, X. Liu, F. Gao, and J. Song, "Omnidirectional beam steering using aperiodic optical phased array with high error margin," Opt. Express 26, 19154-19170 (2018). https://doi.org/10.1364/oe.26.019154
  22. P. Wang, A. Kazemian, X. Zeng, Y. Zhuang, and Y. Yi, "Optimization of aperiodic 3D optical phased arrays based on multilayer Si3N4/SiO2 platforms," Appl. Opt. 60, 484-491 (2021). https://doi.org/10.1364/AO.411718
  23. W. Xu, L. Zhou, L. Lu, and J. Chen, "Aliasing-free optical phased array beam-steering with a plateau envelope," Opt. Express 27, 3354-3368 (2019). https://doi.org/10.1364/OE.27.003354
  24. E. Hecht, Optics: global edition, 5th ed., (Pearson, Edinburgh, UK, 2017), Chapter 9.
  25. J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proc. International Conference on Neural Networks-ICNN'95 (Perth, Australia, Nov. 1995), pp. 1942-1948.
  26. E. Mezura-Montes and C. A. C. Coello, "Constraint-handling in nature-inspired numerical optimization: past, present and future," Swarm Evol. Comput. 1, 173-194 (2011). https://doi.org/10.1016/j.swevo.2011.10.001
  27. M. E. H. Pedersen, "Good parameters for particle swarm optimization," Hvass Laboratories, Denmark, Tech. Rep. HL1001 (2010).
  28. S. Baluja and R. Caruana, "Removing the genetics from the standard genetic algorithm," in Proc. International Conference on Machine Learning (Tahoe City, CA, USA, July 1995), pp. 38-46.
  29. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, USA, 2006), Chapter 5.
  30. T. Kolda, R. M. Lewis, and V. Torczon, "Optimization by direct search: new perspectives on some classical and modern methods," SIAM Rev. 45, 385-482 (2003). https://doi.org/10.1137/S003614450242889
  31. M. A. Abramson, C. Audet, and J. E. Dennis, "Generalized pattern searches with derivative information," Math. Program. 100, 3-25 (2004). https://doi.org/10.1007/s10107-003-0484-5