참고문헌
- C. Mohan, A.R. Al-Bayaty, Power series solutions of the Lane-Emden equation, Astro. Space Sci., 73 (1980), 227-239. https://doi.org/10.1007/BF00642378
- A.M. Wazwaz, A new algorithm for solving differential equations of Lane-Emden type, Appl. Math. Comput., 118 (2001), 287-310. https://doi.org/10.1016/S0096-3003(99)00223-4
- A. Saadatmandi, A. Ghasemi-Nasrabady, A. Eftekhari, Numerical study of singular fractional Lane-Emden type equations arising in astrophysics, J. Astrophys. Astr. 40 (2019), 1-12. https://doi.org/10.1007/s12036-018-9570-1
- R. Saadeh, A. Burqan, A. El-Ajou, Reliable solutions of fractional Lane-Emden equations via Laplace transform and residual error function, Alenxandria Eng. J., 61 (2022), 10551-10562. https://doi.org/10.1016/j.aej.2022.04.004
- A.M. Wazwaz, Solving the non-isothermal reaction-diffusion model equations in a spherical catalyst by the variational iteration method, Chem. Phys. Lett., 679 (2017) 132-136. https://doi.org/10.1016/j.cplett.2017.04.077
- K. Boubaker, R. A. V. Gorder, Application of the BPES to Lane-Emden equations governing polytropic and isothermal gas spheres, New Astron., 17 (2012) 565-569. https://doi.org/10.1016/j.newast.2012.02.003
- H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Courier Corporation, Dover, New York, 1962.
- O.U. Richardson, The Emission of Electricity from Hot Bodies, Longman, Green and Co., London, New York, 1921.
- M. C, Khalique, F. M. Mahomed, B. Muatjetjeja, Lagrangian formulation of a generalized Lane-Emden equation and double reduction, J. Nonl. Math. Phys.,15 (2008), 152-161. https://doi.org/10.2991/jnmp.2008.15.2.3
- H. Madduri, P. Roul, T.C. Hao, F.Z. Cong,Y.F. Shang, An efficient method for solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions and error estimate, J. Math. Chem., 56 (2018), 2691-2706. https://doi.org/10.1007/s10910-018-0912-7
- H. Madduri, P. Roul, A fast-converging iterative scheme for solving a system of Lane-Emden equations arising in catalytic diffusion reactions, J. Math. Chem., 57 (2019), 570-582. https://doi.org/10.1007/s10910-018-0964-8
- P. Roul, A new mixed MADM-Collocation approach for solving a class of Lane-Emden singular boundary value problems, J. Math. Chem., 57 (2019), 945-969. https://doi.org/10.1007/s10910-018-00995-x
- A.K. Verma, S. Kayenat, On the convergence of Mickens' type nonstandard finite difference schemes on Lane-Emden type equations, J. Math. Chem., 56 (2018), 1667-1706. https://doi.org/10.1007/s10910-018-0880-y
- S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover, New York, 1967.
- J.H. He, F. Y. Ji, Taylor series solution for Lane-Emden equation, Journal of Mathematical Chemistry, 57 (2019), 1932-1934 https://doi.org/10.1007/s10910-019-01048-7
- J.I Ramos, Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method, Chaos, Solitons & Fractals, 38 (2008), 400-408. https://doi.org/10.1016/j.chaos.2006.11.018
- S.K Vanani, A. Aminataei, On the numerical solutions of differential equations of Lane-Emden type, Comput. Math. Appl., 59 (2010), 2815-2820.
- M. S. H. Chowdhury, I. Hashim, Solutions of a class of singular second-order IVPs by homotopyperturbation method, Phys. Lett. A, 365 (2007), 439-447. https://doi.org/10.1016/j.physleta.2007.02.002
- O. P. Singh, R. K. Pandey, V. K. Singh, An analytic algorithm of Lane-Emden type equations arising in astrophysics using modified Homotopy analysis method, Comput. Phys. Commun., 180 (2009), 1116-1124. https://doi.org/10.1016/j.cpc.2009.01.012
- A. Yildirim, T. Ozis, Solutions of singular IVPs of Lane-Emden type by the variational iteration method, Nonl. Anal., 70, (2009), 2480-1484.
- S.A. Yousefi, Legendre wavelets method for solving differential equations of Lane-Emden type, Appl. Math. Comput., 181 (2006), 1417-1422. https://doi.org/10.1016/j.amc.2006.02.031
- E. A. -B. Abdel-Salam, M. I. Nouh, E. A. Elkholy, Analytical solution to the conformable fractional LaneEmden type equations arising in astrophysics, Scientific African, 8 (2020), e00386.
- G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501-544. https://doi.org/10.1016/0022-247x(88)90170-9
- G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Boston, 1994.
- G. Adomian, R. Rach, N.T. Shawagfeh, On the analytic solution of Lane-Emden equation, Foundations of Phys. Lett., 8 (1995), 161-181. https://doi.org/10.1007/BF02187585
- U. Saeed, Haar Adomian method for the solution of fractional nonlinear Lane-Emden type equations arising in astrophysics, Taiwanese J. Math., 21 (2017), 1175-1192, https://doi.org/10.11650/tjm/7969
- M. Dehghan, F. Shakeri, Approximate solution of a differential equation arising in astrophysics using the variational iteration method, New Astron., 13 (2008), 53-59. https://doi.org/10.1016/j.newast.2007.06.012
- J.H. He, Variational approach to the Lane-Emden equation, Appl. Math. Comput., 143 (2003), 539-541. https://doi.org/10.1016/S0096-3003(02)00382-X
- A. Aslanov, A generalization of the Lane-Emden equation, Int. J. Comput. Math., 85 (2008), 661-663. https://doi.org/10.1080/00207160701558457
- P. Mach, All solutions of the n = 5 Lane-Emden equation, J. Math. Phys., 53 (2012), 062503.
- M. S. Hashemi, A. Akgul, M. Inc, I. S. Mustafa, D. Baleanu, Solving the Lane-Emden equation within a reproducing kernel method and group preserving scheme, Mathematics, 5 (2017), 1-13. https://doi.org/10.3390/math5010001
- A.M. Malik, O.H. Mohammed, Two efficient methods for solving fractional Lane-Emden equations with conformable fractional derivative, J. Egyptian Math. Soc., 28 (2020)
- P. K. Sahu, B. Mallick, Approximate solution of fractional order Lane-Emden type differential equation by orthonormal Bernoulli's polynomials, Int. J. Appl. Comput. Math, 5 (2019)
- Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Neuro-swarm intelligent computing to solve the second-order singular functional differential model, Eur. Phys. J. Plus, 135 (2020)
- W. Adel, Z. Sabir, Solving a new design of nonlinear second-order Lane-Emden pantograph delay differential model, Eur. Phys. J. Plus, 135 (2020)
- R. Gupta, S. Kumar, Numerical simulation of variable-order fractional differential equation of nonlinear Lane-Emden type appearing in astrophysics, Int. J. Nonlinear Sci. Num. Simul., 23 (2022)
- M. A. Abdelkawy, Z. Sabir, J. L. G. Guirao, T. Saeed, Numerical investigations of a new singular secondorder nonlinear coupled functional Lane-Emden model, Open Phys.,18 (2020), 770-778. https://doi.org/10.1515/phys-2020-0185
- K. Tablennehas, Z. Dahmani, M. M. Belhamiti, A. Abdelnebi, M. Z. Sarikaya, On a fractional problem of Lane-Emden type: Ulam type stabilities and numerical behaviors, Adv. Differ. Equat.,2021 (2021)
- H. F. Ahmed, M. B. Melad, A new numerical strategy for solving nonlinear singular Emden-Fowler delay differential models with variable order, Math. Sci., (2022)
- R. O. Awonusika, Analytical solution of a class of fractional Lane-Emden equation: a power series method, Int. J. Appl. Comput. Math,8 (2022)
- R. O. Awonusika, O. A. Mogbojuri, Approximate analytical solution of fractional Lane-Emden equation by Mittag-Leffler function method, J. Nig. Soc. Phys. Sci., 4 (2022), 265-280.
- M.S. Mechee, N. Senu, Numerical study of fractional differential equations of Lane-Emden type by method of collocation, Appl. Math., 3 (2012), 851-856. https://doi.org/10.4236/am.2012.38126
- M. I. Nouh, E. A.-B. Abdel-Salam, Approximate Solution to the Fractional Lane-Emden Type Equations, Iran J Sci Technol Trans Sci, 42 (2017), 2199-2206.
- A. Akgul, M. Inc, E. Karatas, D. Baleanu, Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique, Adv. Differ. Equat., 2015 (2015)
- B. Caruntu, C. Bota, M. Lapadat, M. S. Pasca, Polynomial least squares method for fractional Lane-Emden equations, Symmetry, 11 (2019)
- J. Davila, L. Dupaigne, J. Wei, On the fractional Lane-Emden equation, Trans. Am. Math. Soc.,369 (2017), 6087-6104. https://doi.org/10.1090/tran/6872
- A. K. Nasab, Z. P. Atabakan, A. I. Ismail, R. W. Ibrahim, A numerical method for solving singular fractional Lane-Emden type equations, J. King Saud University-Science,30 (2018)
- A. H. Bhrawy, A. S. Alofi, A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 62-70. https://doi.org/10.1016/j.cnsns.2011.04.025
- P. O. Olatunji, Second derivative multistep methods with nested hybrid evaluation, M.Sc. Thesis, Department of Mathematics, University of Benin, Nigeria, 2017.
- P. O. Olatunji, M. N. O. Ikhile, Variable order nested hybrid multistep methods for stiff ODEs, J. Math. Comput. Sci., 10 (2020), 78-94.
- A. Figueroa, Z. Jackiewicz, R. Lohner, Explicit two-step Runge-Kutta methods for computational fluid dynamics solvers, Int. J. Numer. Methods Fluids, 93 (2020), 429-444.
- A. Figueroa, Z. Jackiewicz, R. Lohner, Efficient two-step Runge-Kutta methods for fluid dynamics simulations, Appl. Numer. Math., 159 (2021), 1-20. https://doi.org/10.1016/j.apnum.2020.08.013
- S. E. Ogunfeyitimi and M. N. O. Ikhile, Second derivative generalized extended backward differentiation formulas for stiff problems, J. Korean Soc. Ind. Appl. Math., 23 (2019) 179-202. https://doi.org/10.12941/jksiam.2019.23.179
- S. E. Ogunfeyitimi and M. N. O. Ikhile, Multiblock boundary value methods for ordinary differential and differential algebraic equations, J. Korean Soc. Ind. Appl. Math., 24 (2020), 243-291. https://doi.org/10.12941/JKSIAM.2020.24.243
- J. C. Butcher, Numerical methods for solving ordinary differential equations, Wiley, Chichester, 2016.
- P. O. Olatunji, Nested general linear methods for stiff differential equations and differential algebraic equations, PhD Thesis, Department of Mathematics, University of Benin, Nigeria, 2021.
- P. O. Olatunji, M. N. O. Ikhile, Strongly regular general linear methods, J. Sci. Comput., 82 (2020), 1-25. https://doi.org/10.1007/s10915-019-01102-1
- P. O. Olatunji, M. N. O. Ikhile, FSAL mono-implicit Nordsieck general linear methods with inherent Runge - Kutta stability for DAEs, J. Korean Soc. Ind. Appl. Math., 25 (2021), 262-295.
- P. O. Olatunji, M. N. O. Ikhile, R. I. Okuonghae, Nested second derivative two-step Runge-Kutta methods, Int. J. Appl. Comput. Math., 7 (2021), 1-39. https://doi.org/10.1007/s40819-020-00933-z
- K. Parand, M. Dehghan, A. R. Rezaei, S. M. Ghaderi, An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method, Comput. Phys. Commun., 181 (2010), 1096-1108. https://doi.org/10.1016/j.cpc.2010.02.018
- A.M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111 (2000), 53-69. https://doi.org/10.1016/S0096-3003(99)00063-6
- K. Abbaoui, Y. Cherruault, Convergence of Adomian's method applied to differential equations, Comput. Math. Appl., 102 (1999), 77-86. https://doi.org/10.1016/S0096-3003(98)10024-3
- R. Rach, A convenient computational form for the Adomian polynomials, J. Math. Anal. Appl., 102 (1984), 415-419. https://doi.org/10.1016/0022-247X(84)90181-1
- V. Seng, K. Abbaoui, Y. Cherruault, Adomian's polynomials for nonlinear operators, Mathl. Comput. Modelling, 24 (1996), 59-65.
- A.M. Wazwaz, The decomposition method for approximate solution of the Goursat problem, Appl. Math. Comput., 69 (1995), 299-311. https://doi.org/10.1016/0096-3003(94)00137-S
- A.M. Wazwaz, A reliable modification of Adomian's decomposition method, Appl. Math. Comput., 102 (1999), 77-86. https://doi.org/10.1016/S0096-3003(98)10024-3