Acknowledgement
The first author (D. Jeong) was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2020R1F1A1A01075937). The corresponding author (J.S. Kim) was supported by the National Research Foundation(NRF), Korea, under project BK21 FOUR. The authors appreciate the reviewers for the valuable comments on the revision of this article.
References
- E. D. Siggia, Late stages of spinodal decomposition in binary mixtures, Physical review A, 20(2) (1979), 595. https://doi.org/10.1103/PhysRevA.20.595
- J. T. Cabral, J. S. Higgins, T. C. B. McLeish, S. Strausser, S. N. Magonov Bulk, spinodal decomposition studied by atomic force microscopy and light scattering, Macromolecules, 34(11) (2001), 3748-3756. https://doi.org/10.1021/ma0017743
- H. J. Chung, R. J. Composto, Breakdown of dynamic scaling in thin film binary liquids undergoing phase separation, Physical review letters, 92(18) (2004), 185704. https://doi.org/10.1103/PhysRevLett.92.185704
- B. P. Lee, J. F. Douglas, S. C. Glotzer, Filler-induced composition waves in phase-separating polymer blends, Physical Review E, 60(5) (1999), 5812. https://doi.org/10.1103/PhysRevE.60.5812
- F. A. Castro, C. F. Graeff, J. Heier, R. Hany, Interface morphology snapshots of vertically segregated thin films of semiconducting polymer/polystyrene blends, Polymer, 48(8) (2007), 2380-02386. https://doi.org/10.1016/j.polymer.2007.02.059
- P. Sphingomyelin, Lipid Rafts: Phase Separation in Lipid Bilayers studied with Atomic Force Microscopy, https://analyticalscience.wiley.com/do/10.1002/micro.162/full/
- R. Blossey, Thin film rupture and polymer flow, Physical Chemistry Chemical Physics, 10(34) (2008), 5177-5183. https://doi.org/10.1039/b807728m
- J. L. Masson, R. Limary, P. F. Green, Pattern formation and evolution in diblock copolymer thin films above the order-disorder transition, The Journal of Chemical Physics, 114(24) (2001), 10963-10967. https://doi.org/10.1063/1.1370565
- A. Novick-Cohen, L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Physica D: Nonlinear Phenomena, 10(3) (1984), 277-298. https://doi.org/10.1016/0167-2789(84)90180-5
- C. M. Elliott, Z. Songmu, On the cahn-hilliard equation, Archive for Rational Mechanics and Analysis, 96(4) (1986), 339-357. https://doi.org/10.1007/BF00251803
- L. A. Caffarelli, N. E. Muler, An L∞ bound for solutions of the Cahn-Hilliard equation, Archive for rational mechanics and analysis, 133(2) (1995), 129-144. https://doi.org/10.1007/BF00376814
- Y. Jingxue, On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation, Journal of differential equations, 97(2) (1992), 310-327. https://doi.org/10.1016/0022-0396(92)90075-X
- C. M. Elliott, H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, Siam journal on mathematical analysis, 27(2) (1996), 404-423. https://doi.org/10.1137/S0036141094267662
- P. C. Fife, Dynamical aspects of the Cahn-Hilliard equations, University of Tennessee; Knoxville; TN; Barret Lectures, 1991.
- P. C. Fife, Models for phase separation and their mathematics, Electron. J. Differ. Eq. Conf., 48 (2000), 1-26.
- M. Grinfeld, A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 125(2) (1995), 351-370. https://doi.org/10.1017/S0308210500028079
- P. Rybka, K. H. Hoffnlann, Convergence of solutions to Cahn-Hilliard equation, Communications in partial differential equations, 24(5-6) (1999), 1055-1077. https://doi.org/10.1080/03605309908821458
- D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numerische Mathematik, 87(4) (2001), 675-699. https://doi.org/10.1007/PL00005429
- Y. He, Y. Liu, T. Tang, On large time-stepping methods for the Cahn-Hilliard equation, Applied Numerical Mathematics, 57(5-7) (2007), 616-628. https://doi.org/10.1016/j.apnum.2006.07.026
- J. Zhu, L. Q. Chen, J. Shen, V. Tikare, Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: Application of a semi-implicit Fourier spectral method, Physical Review E, 60(4) (1999), 3564. https://doi.org/10.1103/PhysRevE.60.3564
- E. V. L. De Mello, O. T. da Silveira Filho, Numerical study of the Cahn-Hilliard equation in one, two and three dimensions, Physica A: Statistical Mechanics and its Applications, 347 (2005), 429-443. https://doi.org/10.1016/j.physa.2004.08.076
- M. I. M. Copetti, C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numerische Mathematik, 63Z(1) (1992), 39-65.
- T. M. Rogers, R. C. Desai, Numerical study of late-stage coarsening for off-critical quenches in the CahnHilliard equation of phase separation, Physical Review B, 39(16) (1989), 11956. https://doi.org/10.1103/physrevb.39.11956
- C. M. Elliott, D. A. French, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA Journal of Applied Mathematics, 38(2) (1987), 97-128. https://doi.org/10.1093/imamat/38.2.97
- L. Ju, J. Zhang, Q. Du, Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations, Computational Materials Science, 108(2015), 272-282. https://doi.org/10.1016/j.commatsci.2015.04.046
- Y. Zhao, P. Stein, B. X. Xu, Isogeometric analysis of mechanically coupled Cahn-Hilliard phase segregation in hyperelastic electrodes of Li-ion batteries, Computer Methods in Applied Mechanics and Engineering, 297, 325-347. https://doi.org/10.1016/j.cma.2015.09.008
- Y. Shang, L. Fang, M. Wei, C. Barry, J. Mead, D. Kazmer, Verification of numerical simulation of the self-assembly of polymer-polymer-solvent ternary blends on a heterogeneously functionalized substrate, Polymer, 52(6) (2011), 1447-1457. https://doi.org/10.1016/j.polymer.2011.01.038
- H. Mantz, K. Jacobs, K. Mecke, Utilizing Minkowski functionals for image analysis: a marching square algorithm, Journal of Statistical Mechanics: Theory and Experiment, 2008(12) (2008), 12015.
- S. Burger, T. Fraunholz, C. Leirer, R. H. Hoppe, A. Wixforth, M. A. Peter, T. Franke, Comparative study of the dynamics of lipid membrane phase decomposition in experiment and simulation, Langmuir, 29(25) (2013), 7565-7570. https://doi.org/10.1021/la401145t
- J. W. Cahn, On spinodal decomposition, Acta metallurgica, 9(9) (1961), 795-801. https://doi.org/10.1016/0001-6160(61)90182-1
- D. Lee, J. Y. Huh, D. Jeong, J. Shin, A. Yun, J. Kim, Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation, Computational Materials Science, 81 (2014), 216-225. https://doi.org/10.1016/j.commatsci.2013.08.027
- Y. Li, J. Kim, An unconditionally stable hybrid method for image segmentation, Applied Numerical Mathematics, 82 (2014), 32-43. https://doi.org/10.1016/j.apnum.2013.12.010
- W. L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987.
- U. Trottenberg, C. Oosterlee, A. Schuller, Multigrid, Academic Press, London, 2001.
- M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, Robust and optimal multi-iterative techniques for IgA collocation linear systems, Computer Methods in Applied Mechanics and Engineering, 284 (2015), 1120-1146. https://doi.org/10.1016/j.cma.2014.11.036
- H. K. Kodali, B. Ganapathysubramanian, A computational framework to investigate charge transport in heterogeneous organic photovoltaic devices, Computer Methods in Applied Mechanics and Engineering, 247 (2012), 113-129. https://doi.org/10.1016/j.cma.2012.08.012
- Y. G. Smirnova, M. Fuhrmans, I. A. B. Vidal, M. Muller, Free-energy calculation methods for collective phenomena in membranes, Journal of Physics D: Applied Physics, 48(34) (2015), 343001.
- J. Fan, T. Han, M. Haataja, Hydrodynamic effects on spinodal decomposition kinetics in planar lipid bilayer membranes, The Journal of Chemical Physics, 133(23) (2010), 235101.
- J. W. Choi, H. G. Lee, D. Jeong, J. Kim, An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Physica A, 388(9) (2009), 1791-1803. https://doi.org/10.1016/j.physa.2009.01.026