DOI QR코드

DOI QR Code

Activity of Anti-Methicillin Resistant Staphylococcus aureus Compound Derived Marine Actinomycetes and Its Synergistic Effect

해양 방선균 유래 항 Methicillin Resistant Staphylococcus aureus 물질의 활성 및 상승 효과

  • 정성윤 (대구가톨릭대학교 바이오메디컬학과)
  • Received : 2022.11.24
  • Accepted : 2022.12.30
  • Published : 2022.12.30

Abstract

We isolated marine actinomycetes, strain D-5 which produces anti-methicillin resistant Staphylococcus aureus (anti-MRSA) compound. Streptomyces sp. D-5 relatively grew well in the 20~25℃, pH 8.0, and NaCl 3.0%. The ethyl acetate extract of D-5 culture was separated by C18 ODS open column and reverse phase HPLC to yield anti-MRSA compound. The molecular weight of this compound was determined to be 898 by a Liquid chromatograph-mass spectrometer (LC-MS). Compared with penicillin G, this compound showed significant anti-MRSA activity. It also exhibited an inhibition zone of 26 mm at a concentration of 64 ㎍/disk and an inhibition zone of 16 mm at a concentration of 16 ㎍/disk against the MRSA KCCM 40511. Furthermore, the co-treatment of HPLC peak 5 compound and vancomycin caused a more rapid decrease in MRSA cells than each compound alone. It showed 86.8% growth inhibition activity within 12 hours at a low concentration of 50 ㎍/mL during co-treatment, and 97.1% growth in-hibition activity within 48 hours against MRSA KCCM 40511. Taken together, our results suggest that Streptomyces sp. D-5 and its anti-MRSA compound could be employed as a potent agent in MRSA infection.

Keywords

Acknowledgement

이 논문은 2020년도 대구가톨릭대학교 학술연구비 지원에 의한 것이며 이에 감사드립니다(20201204).

References

  1. Munita, J. M., Arias, C. A. 2016. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4, doi: 10.1128/microbiolspec.VMBF-0016-2015.
  2. Davis, S. L., Perri, M. B., Donabedian, S. M., Manierski, C., Robinson-Dunn, S., Hayden, M. K., Zervos, M. J. 2007. Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection. J. Clin. Microbiol. 45, 1705-1711. https://doi.org/10.1128/JCM.02311-06
  3. Cecchini, M., Langer, J., Slawomirski, L. 2015. Antimicrobial resistance in G7 countries and beyond: economic issues, policies and options for action. Organization for Economic Co-operation and Development (OECD), Paris, France, pp13-18.
  4. Christopher, G. D., Coffey, T. J., Spratt, B. G. 1994. Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to β-lactam antibiotics. Trends Microbiol. 2, 361-366. https://doi.org/10.1016/0966-842X(94)90612-2
  5. Chambers, H. F. 2001. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 7, 178-182. https://doi.org/10.3201/eid0702.700178
  6. Bassetti, M., Nicco, E., Mikulska, M. 2009. Why is community-associated MRSA spreading across the world and how will it change clinical practice? Int. J. Am. Agents. 34, S15-S19.
  7. Aitken, M. 2015. Global medicines use in 2020. IMS Institute for Healthcare Informatics, NJ, USA, pp 3-8.
  8. Kemung, H. M., Tan, L. T. H., Khan, T. M., Chan, K. G., Pusparajah, P., Goh, B. H., Lee, L. H. 2018. Streptomyces as a prominent resource of future anti-MRSA drugs. Frontiers Microbiol. 9, 1-26. https://doi.org/10.3389/fmicb.2018.00001
  9. Proksch, P., Edrada, R. A., Ebel, R. 2003. Drugs from the sea- opportunities and obstacles. Mar. Drugs. 1, 5-17. https://doi.org/10.3390/md101005
  10. Jose, P. A., Jebakumar, R. S. D. 2014. Unexplored hypersaline habitats are sources of novel actinomycetes. Front Microbiol. 5, 242.
  11. Gulder, T. A., Moor, B. S. 2009. Chasing the treasures of the sea-bacterial marine natural products. Curr. Opin. Microbiol. 12, 252-260. https://doi.org/10.1016/j.mib.2009.05.002
  12. Taga, N. 1968. Some ecological aspects of marine bacteria in the KuroShio current. Bul. Misaki Mar. Biol. Inst. Kyoto Univ. 12, 65-76.
  13. Clinical Laboratory Standards Institute. 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard eighth edition (CLSI Document M07-A8). Clinical Laboratory Standards Institute, Wayne, NJ, USA, pp 15-41.
  14. Shirling, E. B., Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16, 313-340. https://doi.org/10.1099/00207713-16-3-313
  15. Jones, K. L. 1949. Fresh isolates of actinomycetes in which the presence of sporogenous aerialmycelia is a fluctuating characteristic. J. Bacteriol. 57, 141.
  16. Kelly, K. L., Judd, D. B. 1965. ISCC-NBS color-name charts illustrated with centroid colors. National Bureau of Standards, Washington, DC, USA, pp 20-99.
  17. Christensen, W. B. 1946. Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J. Bacteriol. 52, 461-466. https://doi.org/10.1128/jb.52.4.461-466.1946
  18. Lanyi, B. 1988. Classical and rapid identification methods for medically important bacteria. Methods Microbiol. 19, 1-67. https://doi.org/10.1016/S0580-9517(08)70407-0
  19. MacFaddin, J. F. 2000. Biochemical tests for identification of medical bacteria. (3rd eds.), Lippincott Williams & Wilkins, Baltimore, USA, pp 20-928.
  20. Siddharth, S., Rai, V. R. 2019. Isolation and characterization of bioactive compounds with antibacterial, antioxidant and enzyme inhibitory activities from marine-derived rare actinobacteria. Nocardiopsis sp. SCA21. Microb. Pathog. 137, 103775.
  21. Liu, L. L., Xu, Y., Han, Z., Li, Y. X., Lu, L., Lai, P. Y. 2012. Four new antibacterial xanthon es from the marine-derived actinomycetes Streptomyces caelestis. Mar. Drugs 10, 2571-2583. https://doi.org/10.3390/md10112571
  22. Haste, N. M., Thienphrapa, W., Tran, D. N., Loesgen, S., Sun, P., Nam, S. J. 2012. Activity of the thiopeptide antibiotic nosiheptide agains t contemporary strains of methicillin-resistant Staphylococcus aureus. J. Antibiot. 65, 593-598. https://doi.org/10.1038/ja.2012.77
  23. Shiota, S. Shimizu, M., Sugiyam, J., Morita, Y., Mizushima. T., Tsuchiya, T. 2004. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol. 48, 67-73. https://doi.org/10.1111/j.1348-0421.2004.tb03489.x
  24. Cha, J. D., Lee, J. H., Choi, K. M., Choi, S. M., Park, J. H. 2014. Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus. Evid.-based Complement Altern. 450572.