Browse > Article
http://dx.doi.org/10.15433/ksmb.2022.14.2.143

Activity of Anti-Methicillin Resistant Staphylococcus aureus Compound Derived Marine Actinomycetes and Its Synergistic Effect  

Seong-Yun, Jeong (Department ofBiomedical, Daegu Catholic University)
Publication Information
Journal of Marine Bioscience and Biotechnology / v.14, no.2, 2022 , pp. 143-154 More about this Journal
Abstract
We isolated marine actinomycetes, strain D-5 which produces anti-methicillin resistant Staphylococcus aureus (anti-MRSA) compound. Streptomyces sp. D-5 relatively grew well in the 20~25℃, pH 8.0, and NaCl 3.0%. The ethyl acetate extract of D-5 culture was separated by C18 ODS open column and reverse phase HPLC to yield anti-MRSA compound. The molecular weight of this compound was determined to be 898 by a Liquid chromatograph-mass spectrometer (LC-MS). Compared with penicillin G, this compound showed significant anti-MRSA activity. It also exhibited an inhibition zone of 26 mm at a concentration of 64 ㎍/disk and an inhibition zone of 16 mm at a concentration of 16 ㎍/disk against the MRSA KCCM 40511. Furthermore, the co-treatment of HPLC peak 5 compound and vancomycin caused a more rapid decrease in MRSA cells than each compound alone. It showed 86.8% growth inhibition activity within 12 hours at a low concentration of 50 ㎍/mL during co-treatment, and 97.1% growth in-hibition activity within 48 hours against MRSA KCCM 40511. Taken together, our results suggest that Streptomyces sp. D-5 and its anti-MRSA compound could be employed as a potent agent in MRSA infection.
Keywords
Anti-MRSA activity; Marine actinomycetes; Methicillin resistant Staphylococcus aureus; Purification; Synergistic effect;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Gulder, T. A., Moor, B. S. 2009. Chasing the treasures of the sea-bacterial marine natural products. Curr. Opin. Microbiol. 12, 252-260.   DOI
2 Taga, N. 1968. Some ecological aspects of marine bacteria in the KuroShio current. Bul. Misaki Mar. Biol. Inst. Kyoto Univ. 12, 65-76.
3 Clinical Laboratory Standards Institute. 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard eighth edition (CLSI Document M07-A8). Clinical Laboratory Standards Institute, Wayne, NJ, USA, pp 15-41.
4 Shirling, E. B., Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16, 313-340.   DOI
5 Jones, K. L. 1949. Fresh isolates of actinomycetes in which the presence of sporogenous aerialmycelia is a fluctuating characteristic. J. Bacteriol. 57, 141.
6 Kelly, K. L., Judd, D. B. 1965. ISCC-NBS color-name charts illustrated with centroid colors. National Bureau of Standards, Washington, DC, USA, pp 20-99.
7 Christensen, W. B. 1946. Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J. Bacteriol. 52, 461-466.   DOI
8 Lanyi, B. 1988. Classical and rapid identification methods for medically important bacteria. Methods Microbiol. 19, 1-67.   DOI
9 MacFaddin, J. F. 2000. Biochemical tests for identification of medical bacteria. (3rd eds.), Lippincott Williams & Wilkins, Baltimore, USA, pp 20-928.
10 Siddharth, S., Rai, V. R. 2019. Isolation and characterization of bioactive compounds with antibacterial, antioxidant and enzyme inhibitory activities from marine-derived rare actinobacteria. Nocardiopsis sp. SCA21. Microb. Pathog. 137, 103775.
11 Liu, L. L., Xu, Y., Han, Z., Li, Y. X., Lu, L., Lai, P. Y. 2012. Four new antibacterial xanthon es from the marine-derived actinomycetes Streptomyces caelestis. Mar. Drugs 10, 2571-2583.   DOI
12 Haste, N. M., Thienphrapa, W., Tran, D. N., Loesgen, S., Sun, P., Nam, S. J. 2012. Activity of the thiopeptide antibiotic nosiheptide agains t contemporary strains of methicillin-resistant Staphylococcus aureus. J. Antibiot. 65, 593-598.   DOI
13 Shiota, S. Shimizu, M., Sugiyam, J., Morita, Y., Mizushima. T., Tsuchiya, T. 2004. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol. 48, 67-73.   DOI
14 Cha, J. D., Lee, J. H., Choi, K. M., Choi, S. M., Park, J. H. 2014. Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus. Evid.-based Complement Altern. 450572.
15 Munita, J. M., Arias, C. A. 2016. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4, doi: 10.1128/microbiolspec.VMBF-0016-2015.   DOI
16 Davis, S. L., Perri, M. B., Donabedian, S. M., Manierski, C., Robinson-Dunn, S., Hayden, M. K., Zervos, M. J. 2007. Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection. J. Clin. Microbiol. 45, 1705-1711.   DOI
17 Cecchini, M., Langer, J., Slawomirski, L. 2015. Antimicrobial resistance in G7 countries and beyond: economic issues, policies and options for action. Organization for Economic Co-operation and Development (OECD), Paris, France, pp13-18.
18 Christopher, G. D., Coffey, T. J., Spratt, B. G. 1994. Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to β-lactam antibiotics. Trends Microbiol. 2, 361-366.   DOI
19 Chambers, H. F. 2001. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 7, 178-182.   DOI
20 Bassetti, M., Nicco, E., Mikulska, M. 2009. Why is community-associated MRSA spreading across the world and how will it change clinical practice? Int. J. Am. Agents. 34, S15-S19.
21 Aitken, M. 2015. Global medicines use in 2020. IMS Institute for Healthcare Informatics, NJ, USA, pp 3-8.
22 Kemung, H. M., Tan, L. T. H., Khan, T. M., Chan, K. G., Pusparajah, P., Goh, B. H., Lee, L. H. 2018. Streptomyces as a prominent resource of future anti-MRSA drugs. Frontiers Microbiol. 9, 1-26.   DOI
23 Proksch, P., Edrada, R. A., Ebel, R. 2003. Drugs from the sea- opportunities and obstacles. Mar. Drugs. 1, 5-17.   DOI
24 Jose, P. A., Jebakumar, R. S. D. 2014. Unexplored hypersaline habitats are sources of novel actinomycetes. Front Microbiol. 5, 242.