DOI QR코드

DOI QR Code

Analysis of Behavioral Changes in Angelfish (Pterophyllum scalare) Infected with Bacterial Pathogens using Video Tracking

Video tracking을 이용한 병원성 세균에 감염된 angelfish (Pterophyllum scalare)의 행동 변화 분석

  • Yoon-Jae, Kim (Department of aquatic life medicine, Pukyong National University) ;
  • Young-Ung, Heo (Department of aquatic life medicine, Pukyong National University) ;
  • Ju-Sung, Kim (Department of aquatic life medicine, Pukyong National University) ;
  • Min-Kyo, Kim (Department of aquatic life medicine, Pukyong National University) ;
  • Do-Hyung, Kim (Department of aquatic life medicine, Pukyong National University)
  • 김윤재 (부경대학교 수산생명의학과) ;
  • 허영웅 (부경대학교 수산생명의학과) ;
  • 김주성 (부경대학교 수산생명의학과) ;
  • 김민교 (부경대학교 수산생명의학과) ;
  • 김도형 (부경대학교 수산생명의학과)
  • Received : 2022.10.11
  • Accepted : 2022.12.01
  • Published : 2022.12.31

Abstract

In recent years, there have been many studies investigating changes in animal behavior using video tracking technology to track motion. However, there have been very few studies and results on changes in the behavior of fish infected with a pathogen. Therefore, the present study attempted to analyze the behavior of angelfish (Pterophyllum scalare) infected with bacterial pathogens using video tracking. Two cameras were placed in front of the water tank to obtain behavior data, and tracking was performed for three days until the day of death. Data such as average speed, changes in speed, the locations of the fish in the tank, and fractal dimension were statistically analyzed based on the fish speed and location in the tank of the fish. For bacterial infection, an individual angelfish was intraperitoneally injected with approximately 106 CFU ml-1 of Aeromonas hydrophila or Edwardsiella piscicida. The experiment was carried out five times for each group. Fish infected with the bacterial pathogens showed a tendency to increase in speed and to spend more time in the upper part of the tank one or two days before death. On the day the fish died, the average speed, changes in speed, and the fractal dimension value were significantly lower than the corresponding values in the control group, and the fish also remained in the lower part of the tank. Our results indicated that behavioral changes in fish could be successfully detected earlier than death using video tracking technology, and that this method presents potential for disease monitoring in aquaculture.

Keywords

Acknowledgement

이 논문은 2022학년도 부경대학교 국립대학육성사업 지원비(PhiNX 보호학문 차세대육성)에 의하여 연구되었음.

References

  1. Baldissera MD, Souza CF, Santos RC, da Rosa LVC, Rosemberg DB, & Baldisserotto B. Pseudomonas aeruginosa strain PAO1 infection impairs locomotor activity in experimentally infected Rhamdia quelen: Interplay between a stress response and brain neurotransmitters. Aquaculture, 473, 74-79. 2017. https://doi.org/10.1016/j.aquaculture.2017.02.004
  2. Blaser R, & Gerlai R. Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behavior research methods, 38(3), 456-469. 2006. https://doi.org/10.3758/BF03192800
  3. Cachat J, Stewart A, Utterback E, Hart P, Gaikwad S, Wong K, Kyzar E, Wu N and Kalueff AV. Three-dimensional neurophenotyping of adult zebrafish behavior. PloS one 6, e17597. 2011. https://doi.org/10.1371/journal.pone.0017597
  4. Choe, Y., Yu, J. E., Park, J., Park, D., Oh, J. I., Kim, S., Moon, K. & Kang, H. Y. Goldfish, Carassius auratus, as an infection model for studying the pathogenesis of Edwardsiella piscicida. Veterinary research communications, 41(4), 289-297. 2017. https://doi.org/10.1007/s11259-017-9700-2
  5. Deakin AG, Spencer JW, Cossins AR, Young IS, & Sneddon LU. Welfare challenges influence the complexity of movement: fractal analysis of behaviour in zebrafish. Fishes, 4(1), 8. 2019. https://doi.org/10.3390/fishes4010008
  6. Denoel M, Libon S, Kestemont P, Brasseur C, Focant JF and Pauw ED. Effects of a sublethal pesticide exposure on locomotor behavior: a video-tracking analysis in larval amphibians. Chemosphere 90, 945-951. 2013. https://doi.org/10.1016/j.chemosphere.2012.06.037
  7. Grandjean, F., Gilbert, C., Razafimafondy, F., Vucic, M., Delaunay, C., Gindre, P., Bouchard, J., Raimond, M., & Moumen, B. A new bunya-like virus associated with mass mortality of white-clawed crayfish in the wild. Virology, 533, 115-124. 2019. https://doi.org/10.1016/j.virol.2019.05.014
  8. Hawke JP, Durborow RM, Thune RL, & Camus AC. Enteric septicemia of catfish. ESC Enteric Septicemia of Catfish. Southern Regional Aquaculture Center, p. 477 1998
  9. Junior GB, de Freitas Souza C, Descovi SN, Antoniazzi A, Cargnelutti JF, & Baldisserotto B. Aeromonas hydrophila infection in silver catfish causes hyperlocomotion related to stress. Microbial pathogenesis, 132, 261-265. 2019. https://doi.org/10.1016/j.micpath.2019.05.017
  10. Kato, S., Tamada, K., Shimada, Y., & Chujo, T. A quantification of goldfish behavior by an image processing system. Behavioural Brain Research, 80(1-2), 51-55. 1996. https://doi.org/10.1016/0166-4328(96)00018-6
  11. Kim YJ, No HM and Kim DH. Analysis and Prediction of Behavioral Changes in Angelfish Pterophyllum scalare Under Stress Conditions. Korean journal of fisheries and aquatic sciences, vol. 54, no. 6, pp.965-973, December, 2021. https://doi.org/10.5657/KFAS.2021.0965
  12. Lee, S. B., Choe, Y., Chon, T. S., & Kang, H. Y. Analysis of zebrafish (Danio rerio) behavior in response to bacterial infection using a self-organizing map. BMC veterinary research, 11(1), 1-12. 2015. https://doi.org/10.1186/s12917-015-0579-2
  13. Li, J., Du, Q., & Sun, C. An improved box-counting method for image fractal dimension estimation. Pattern recognition, 42(11), 2460-2469. 2009. https://doi.org/10.1016/j.patcog.2009.03.001
  14. MacAulay, S., Ellison, A. R., Kille, P., & Cable, J. Moving towards improved surveillance and earlier diagnosis of aquatic pathogens: From traditional methods to emerging technologies. Reviews in Aquaculture. 2022. https://doi.org/10.1111/raq.12674
  15. Macri S, Neri D, Ruberto T, Mwaffo V, Butail S and Porfiri M. Three-dimensional scoring of zebrafish behavior unveils biological phenomena hidden by two-dimensional analyses. Sci Rep 7, 1-10. 2017. https://doi.org/10.1038/s41598- 017-01990-z
  16. Miller, N., & Gerlai, R. Quantification of shoaling behaviour in zebrafish (Danio rerio). Behavioural brain research, 184(2), 157-166. 2007. https://doi.org/10.1016/j.bbr.2007.07.007
  17. Nimkerdphol K, & Nakagawa M. Effect of sodium hypochlorite on zebrafish swimming behavior estimated by fractal dimension analysis. Journal of bioscience and bioengineering, 105(5), 486-492. 2008A. https://doi.org/10.1263/jbb.105.486
  18. Nimkerdphol K, & Nakagawa M. 3D Locomotion and Fractal Analysis of Goldfish for Acute Toxicity Bioassay. International Journal of Bioengineering and Life Sciences, 2(1), 38-43. 2008B. https://doi.org/10.5281/zenodo.1326718
  19. Noldus LP, Spink AJ and Tegelenbosch RA. Computerised video tracking, movement analysis and behaviour recognition in insects. Comput Electron Agric 35, 201-227. 2002. https://doi.org/10.1016/S0168-1699(02)00019-4
  20. Pandey, V., Bhat, R. A. H., Chandra, S., Tandel, R. S., Dubey, M. K., Sharma, P., Gehlot, B., Dash, P., & Joshi, R. Clinical signs, lethal dose and histopathological lesions in grass carp, Ctenopharyngodon idella experimentally infected with Edwardsiella tarda. Microbial Pathogenesis, 161, 105292. 2021. https://doi.org/10.1016/j.micpath.2021.105292
  21. Preena, P. G., Arathi, D., Raj, N. S., Arun Kumar, T. V., Arun Raja, S., Reshma, R. N., & Raja Swaminathan, T. Diversity of antimicrobial-resistant pathogens from a freshwater ornamental fish farm. Letters in applied microbiology, 71(1), 108-116. 2020. https://doi.org/10.1111/lam.13231
  22. Rakus, K., Mojzesz, M., Widziolek, M., Pooranachandran, N., Teitge, F., Surachetpong, W., Chadzinska, M., Steinhagen, D., & Adamek, M. Antiviral response of adult zebrafish (Danio rerio) during tilapia lake virus (TiLV) infection. Fish & shellfish immunology, 101, 1-8. 2020. https://doi.org/10.1016/j.fsi.2020.03.040
  23. Roh, H. J., Kim, B. S., Kim, A., Kim, N. E., Lee, Y., Chun, W. K., Ho, T. D, & Kim, D. H. Whole-genome analysis of multi-drug-resistant Aeromonas veronii isolated from diseased discus (Symphysodon discus) imported to Korea. Journal of fish diseases, 42(1), 147-153. 2019. https://doi.org/10.1111/jfd.12908
  24. Samayanpaulraj, V., Velu, V., & Uthandakalaipandiyan, R. Determination of lethal dose of Aeromonas hydrophila Ah17 strain in snake head fish Channa striata. Microbial pathogenesis, 127, 7-11. 2019. https://doi.org/10.1016/j.micpath.2018.11.035
  25. Stewart AM, Grieco F, Tegelenbosch RA, Kyzar EJ, Nguyen M, Kaluyeva A, Song C, Noldus LP, Kalueff AV. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. Journal of neuroscience methods, 255, 66-74. 2015. https://doi.org/10.1016/j.jneumeth.2015.07.023
  26. Swanson, C., Baxa, D. V., Young, P. S., Cech Jr, J. J., & Hedrick, R. P. Reduced swimming performance in delta smelt infected with Mycobacterium spp. Journal of fish Biology, 61(4), 1012-1020. 2002. https://doi.org/10.1111/j.1095-8649.2002.tb01859.x
  27. Whittington RJ, & Chong R. Global trade in ornamental fish from an Australian perspective: the case for revised import risk analysis and management strategies. Preventive Veterinary Medicine, 81(1-3), 92-116. 2007. https://doi.org/10.1016/j.prevetmed.2007.04.007
  28. Xia, C., Fu, L., Liu, Z., Liu, H., Chen, L., & Liu, Y. Aquatic toxic analysis by monitoring fish behavior using computer vision: a recent progress. Journal of toxicology, 2018. https://doi.org/10.1155/2018/2591924
  29. Zurn JB, Hohmann D, Dworkin SI and Motai Y. A real-time rodent tracking system for both light and dark cycle behavior analysis. In: 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05)- Volume 1. Breckenridge, CO, U.S.A., 87-92. 2005. https://doi.org/10.1109/ACVMOT.2005.9