DOI QR코드

DOI QR Code

항공탑재 EO/IR의 영상떨림을 고려한 영상기반 자동 초점조절 기법 연구

A Study on the Image Based Auto-focus Method Considering Jittering of Airborne EO/IR

  • 투고 : 2021.09.16
  • 심사 : 2021.12.07
  • 발행 : 2022.01.01

초록

본 논문에서는 타겟과의 거리 및 EO/IR 장비 내부 온도정보를 이용한 전통적인 방식의 초점조절 방식의 단점을 보완할 수 있는 향상된 영상기반 초점 조절 기법을 제안하였다. 영상기반 초점조절시 카메라시선의 흔들림에 의해 동일한 표적으로 시선을 지향하지 못해 영상의 다른 영역에 초점 윈도우를 설정함으로 인해 정확한 초점 값을 계산할 수 없게 된다. 이러한 문제를 해결하기 위해 영상추적 기법을 적용하여 동일한 위치에 포커스 윈도우가 설정되도록 하여 최적의 초점위치 탐색 정확도를 향상시키고자 하였다. 또한 동일한 초점위치에서 플랫폼의 진동이나 흔들림 그리고 대기환경에 의한 영상 불안정으로 인해 동일한 초점 값이 계산되지 않기 때문에 인접프레임 중에 보다 안정적인 상태에서 획득된 프레임을 선택함으로써 국부최대값(Lcoal maxima) 빠지지 않고 최적의 초점 위치를 찾는 기법을 제안하였다.

In this paper, we propose methods to improve image-based auto-focus that can compensate for drawbacks of traditional auto-focus control. When adjusting the focus, there is a problem that the focus window cannot be set to the same position if the camera's LOS is not directed at the same location and flow or shake. To address this issue, we applied image tracking techniques to improve optimal focus localization accuracy. And also, although the same focus value should be calculated at the same focus step, but different values can be calculated by camera's fine shaking or image disturbance due to atmospheric scattering. To tackle this problem a SAFS (Stable Adjacency Frame Selection) has been proposed. As a result of this study, our proposed methodology shows more accurate than traditional methods in terms of finding best focus position.

키워드

참고문헌

  1. Schulz, M. and Caldwell, L., "Nonuniformity correction and correctability of infrared focal plane arrays," Infrared Physics & Technology, Vol. 36, Iss. 4, June 1995, pp. 763~777. https://doi.org/10.1016/1350-4495(94)00002-3
  2. Torres, S. N. and Hayat, M. M., "Kalman filtering for adaptive nonuniformity correction in infrared focal-plane arrays," Optical Society of America A, Vol. 20, Iss. 3, 2003, pp. 470~480. https://doi.org/10.1364/JOSAA.20.000470
  3. Han, J. Y., Marchuk, S., Kim, H. S., Kim, C. W. and Park, K. W., "Imaging EO/IR Optical System for Long Oblique Photography," SPIE Defense, Security and Sensing, Vol. 8020, No. 802009, 2011.
  4. Bolme, D. S., Beveridge, J. R., Draper, B. A. and Lui, U. M., "Visual Object Tracking using Adaptive Correlation Filters," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 2544~2550.
  5. Shih, L., "Autofocus survey: a comparison of algorithms," Proceeding of SPIE 6502, Digital Photography III, Vol. 6502, 2007.
  6. Zhang, Y., Liu, L., Gong, W. and Yu, H., "Autofocus System and Evaluation Methodologies : A Literature Review," Sensors and Materials, Vol. 30, No. 5, 2018, pp. 1165~1174.
  7. Sun, Y., Duthaler, S. and Nelson, B. J., "Autofocusing in Computer Microscopy: Selecting the Optimal Focus Algorithm," Microscopy Research and Technique, Vol. 65, No. 3, 2004, pp. 139-149. https://doi.org/10.1002/jemt.20118
  8. Srivastava, A. K. and Kandpal, N., "Design and Implementation of a Real-Time Autofocus Algorithm for Thermal Imagers," Proceedings of International Conference on Computer Vision and Image Processing, 2017, pp. 377~387.
  9. Yao, Y., Abidi, B., Doggaz, N. and Abidi, M., "Evaluation of sharpness measures and search algorithms for the auto-focusing of high-magnification images," Proceeding of SPIE 6246, Visual Information Processing XV, 62460G, 2006.
  10. Yao, Y., Abidi, B., Doggaz, N. and Abidi, M., "Extreme Zoom Surveillance: System Design and Image Restoration," Journal of Multimedia, Vol. 2, No. 1, 2007, pp. 20~31.
  11. Tsai, D. C. and Chen, H. H., "Reciprocal Focus Profile," IEEE Transactions on Image Processing, Vol. 21, No. 2, 2001, pp. 459~468. https://doi.org/10.1109/TIP.2011.2164417
  12. Xu, X., Wang, Y., Tang, J., Zhang, X. and Liu, X., "Robust Automatic Focus Algorithm for Low Contrast Images Using a New Contrast Measure," Sensors, 2011, Vol. 11, No. 9, pp. 8281~8294 https://doi.org/10.3390/s110908281
  13. Chern, N. K., Neow, N. A. and Ang, M. H., "Practical Issues in Picel-Based Autofocusing for Machine Vision," Proceedings of the 2001 IEEE International Conference on Robotics 8 Automation, 2001.
  14. Pertuz, S., Puig, D. and Garcia, M. A., "Analysis of focus measure operators for shape-from-focus," Pattern Recognition, Vol. 46, Iss. 5, 2013, pp. 1415~1432. https://doi.org/10.1016/j.patcog.2012.11.011
  15. Geusebroek, J., Cornelissen, F., Smeilders, A. and Geerts, H., "Robust autofocusing in microscopy," Cytometry, Vol. 39, Iss. 1, 2000, pp. 1~9. https://doi.org/10.1002/(SICI)1097-0320(20000101)39:1<1::AID-CYTO2>3.0.CO;2-J
  16. Pech-Pacheco, J. L., Cristobal, G., Chamorro-Martinez, J. and Fernandez-Valdivia, J., "Diatom autofocusing in brightfield microscopy: a comparative study," Proceedings of the International Conference on Pattern Recognition, Vol. 3, 2000, pp. 314~317.
  17. Krotkov, E., "Focusing," International Journal of Computer Vision, Vol. 1, No. 3, 1987, pp. 223~237. https://doi.org/10.1007/BF00127822
  18. Kehtarnavaz, N. and Oh, H. J., "Development and real-time implementation of a rule-based auto-focus algorithm," Real-Time Imaging, Vol. 9, 2003, pp. 197~203. https://doi.org/10.1016/S1077-2014(03)00037-8
  19. He, J., Zhou, R. and Hong, Z., "Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera," IEEE Transactions on Consumer Electronics, Vol. 49, Iss. 2, 2003, pp. 257~262. https://doi.org/10.1109/TCE.2003.1209511