DOI QR코드

DOI QR Code

국내 중소하천에 설치된 아이스하버 어도 내부 흐름 특성 규명

Investigation for flow characteristics of ice-harbor type fishway installed at mid-sized streams in Korea

  • 백경오 (국립한경대학교 건설환경공학부) ;
  • 민병조 (국립한경대학교 건설환경공학부)
  • Baek, Kyong Oh (Department of Civil and Environmental Engineering, Hankyong National University) ;
  • Min, Byong Jo (Department of Civil and Environmental Engineering, Hankyong National University)
  • 투고 : 2021.08.21
  • 심사 : 2021.11.19
  • 발행 : 2022.01.31

초록

본 연구에서는 3차원 상용 수치모형 Flow-3D를 활용하여 상류 수위(유입유량) 변동, 격벽의 간격(pool의 길이) 변화, 잠공 유무 등에 따른 아이스 하버 어도 내 흐름 양상을 분석하였다. 수치모의 결과의 적합성을 입증하기 위해 경안천 대곡교 하류에 설치된 실제 어도에서 3차원 초음파 유속계를 사용하여 어도 출구부 단면 유속과 유량을 관측하였다. Flow-3D 모형에는 난류 모듈로 4가지를 선택할 수 있는데, 관측 자료로 검증 결과 RNG 모형이 아이스하버 어도 내 흐름 특성을 가장 잘 재현하였다. 하천의 유량 전량이 어도로만 유입되어 흐른다는 조건에서 수위 변화에 따른 어도 내 유속구조를 모의해 보았다. 그 결과 최저수위에서는 잠입류와 표면류가 혼재하여 발생하였는데, 최저수위에서 약 10 cm 이상만 수위가 상승하여도 모든 pool에서 잠입류가 사라지고 오직 표면류만 발생하였다. 예상과 달리 수위가 조금 상승해도 흐름이 꽤 단순하게 표면류 위주로 발생하였다. 격벽간 간격을 늘려주면 수위가 상승하더라도 잠입류와 표면류가 혼재되어 나타나는 현상이 지속되었다. 그리고 격벽 하단에 잠공이 있는 경우가 없는 경우에 비해 잠입류가 여러 pool에서 생성되는 경향을 보였다. 보다 적극적인 어도 사후 관리로 잠공 폐색을 막아 어도 내 다양한 흐름이 생성될 수 있도록 유도하는 것이 필요해 보인다.

In this study, flow patterns in the ice-harbor fishway were analyzed according to fluctuations of the upstream water level, an increase of weir interval, and the presence or absence of orifices using a three-dimensional commercial numerical model, Flow-3D. In order to prove the suitability of the numerical simulation results, the flow velocity and flow rate at the exit of the fishway were observed using a 3D ultrasonic velocimetry on an actual ice-harbor fishway installed downstream of the Daegok bridge in Gyeongan-Cheon. Four types of turbulence modules can be selected for the Flow-3D model. As a result of verification with observation data, the RNG model best described the flow characteristics in the ice-harbor fishway. The velocity structure in the fishway according to fluctuations of the upstream water level was simulated. The results showed that the plunging flow and the streaming flow were mixed at the lowest water level. When the water level increased about 10 cm or more from the lowest water level, the plunging flow disappeared in all pools and only the streaming flow occurred. Contrary to expectations, even when the water level is rose a little, the flow simply occurred mainly on the streaming flow. If the interval between the weirs is increased, both the plunging flow and the streaming flow are showed continued even if the water level rises. In addition, compared to the case where there are no orifices at the bottom of the weirs, the plunging flow tends to be generated in several pools. It is necessary to prevent blocking orifices through active management so that various flow patterns in the fishway can be generated in multiple pools.

키워드

과제정보

이 논문은 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(과제번호: 2016R1D1A1B02012110).

참고문헌

  1. Ahn, S., Lee, S., and Lee, Z. (2012). "Analysis of hydraulic Characteristics in ice-harbor fishway." Journal of the Environmental Sciences, Vol. 21, No.11, pp. 1395-1406. https://doi.org/10.5322/JES.2012.21.11.1395
  2. Alvarez-Vazquez, L.J., Martinez, A., Vazquez-Mendez, M.E., and Vilar, M.A. (2011). "The importance of design in river fishways." Procedia Environmental Sciences, Vol. 9, pp. 6-10. https://doi.org/10.1016/j.proenv.2011.11.002
  3. Baek, K.O. (2019). "Evaluation technique for efficiency of fishway based on hydraulic analysis." Journal of Korea Water Resources Association, Vol. 52, No, S2, pp. 855-863. https://doi.org/10.3741/JKWRA.2019.52.S-2.855
  4. Bermudez, M., Puertas, J., Cea, L., Pena, L., and Balairon, L. (2010). "Influence of pool geometry on the biological efficiency of vertical slot fishway." Ecological Engineering, Vol. 36, pp. 1355-1364. https://doi.org/10.1016/j.ecoleng.2010.06.013
  5. Ead, S.A., Katopodis, C., Sikora, G.j., and Rajaratnam, N. (2004). "Flow regimes and structure in pool and weir fishways." Journal of Environmental Engineering Science, Vol. 3, pp. 379-390. https://doi.org/10.1139/s03-073
  6. Flow Science (2000). USA, accessed 20 June 2021, .
  7. Heimerl, S., Hagmeyer, M., and Echteler, C. (2008). "Numerical flow simulation of pool-type fishways: New ways well-known tools." Hydrobiologia, Vol. 609, pp. 189-196. https://doi.org/10.1007/s10750-008-9413-1
  8. Henderson, F.M. (1966). Open channel flow, Macmillan Publishing Co., NY, U.S.
  9. Jo, J.A., Han, E.J., Kim, Y.D., and Baek, K.O. (2013). "Analysis of hydraulic passage efficiency of ice-harbor type fishway for flowrate change." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1841-1850. https://doi.org/10.12652/Ksce.2013.33.5.1841
  10. Kim, S., Yu, K., Yoon, B., and Lim, Y. (2012). "A numerical study on hydraulic Characteristics in the ice harbor-type fishway." KSCE Journal of Civil Engineering, Vol. 16, No. 2, pp. 265-272. https://doi.org/10.1007/s12205-012-0010-5
  11. Korea Rural Community Corporation (KRC) (2011). Korea, accessed 10 July 2021, .
  12. Korean Water Resources Association (KWRA) (2019). River design standard.
  13. Lim, S.Y. (2010). An analysis of hydraulic characteric characteristics and fish swimming performance associated with distance between baffles in the ice-harbor fishway. Master thesis, Myungji University.
  14. Lucas, M.C., and Baras, E. (2001). Migration of freshwater fishes. Blackwell Science Ltd., Oxford, UK.
  15. Maniecki, L. (2018). "Numerical modelling of fish passage with turning pools." Archives of Hydro-Engineering and Environmental Mechanics, Vol. 65, No. 1, pp. 41-66. https://doi.org/10.1515/heem-2018-0004
  16. Marriner, B.A., Baki, A.B. M., Zhu, D.Z., Thiem, J.D., Cooke, S.J., and Katopodis, C. (2014). "Field and numerical assessment of tunning pool hydraulics in a vertical slot fishway." Ecological Engineering, Vol. 63, pp. 88-101. https://doi.org/10.1016/j.ecoleng.2013.12.010
  17. Rajaratnam, N., and Katopodis, C. (1988). "Plunging and streaming flows in pool and weir fishways." Journal of Hydraulic Engineering, Vol. 114, No. 8, pp. 939-944. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(939)
  18. Silva, A.T., Santos, M.T., Ferreira, Pinheiro, A.N., and Katopodis, C. (2012). "Passage efficiency of offset and straight orifices for upstream movements of Iberian Barbel in a pool-type fishway." River Research and Applications, Vol. 28, pp. 529-542. https://doi.org/10.1002/rra.1465
  19. Song, W., Xu, Q., Fu, X., Wang, C., Pang, Y., and Song, D. (2019). "EFDC simulation of fishway in the diversion Dahaerteng River to Danghe reservoir, China." Ecological Indicators, Vol. 102, pp. 704-715. https://doi.org/10.1016/j.ecolind.2019.03.025
  20. US Fish and Wildlife Service (USFWS) (2019). Fish passage engineering design criteria. MA, U.S.