Acknowledgement
This work was supported by grants from the National Research Foundation (NRF) funded by the Korean government to JWC [NRF-2020M3A9E4104384, NRF-2020R1A6A1A03043708, and NRF-2021R1A2C1005520]. We thank CH Lee for providing assistance for a blind determination.
References
- Abulafia, D. P., de Rivero Vaccari, J. P., Lozano, J. D., Lotocki, G., Keane, R. W. and Dietrich, W. D. (2009) Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J. Cereb. Blood Flow Metab. 29, 534-544. https://doi.org/10.1038/jcbfm.2008.143
- An, Q., Hu, Q., Wang, B., Cui, W., Wu, F. and Ding, Y. (2017) Oleanolic acid alleviates diabetic rat carotid artery injury through the inhibition of NLRP3 inflammasome signaling pathways. Mol. Med. Rep. 16, 8413-8419. https://doi.org/10.3892/mmr.2017.7594
- Ayeleso, T. B., Matumba, M. G. and Mukwevho, E. (2017) Oleanolic acid and its derivatives: biological activities and therapeutic potential in chronic diseases. Molecules 22, 1915. https://doi.org/10.3390/molecules22111915
- Caltana, L., Rutolo, D., Nieto, M. L. and Brusco, A. (2014) Further evidence for the neuroprotective role of oleanolic acid in a model of focal brain hypoxia in rats. Neurochem. Int. 79, 79-87. https://doi.org/10.1016/j.neuint.2014.09.011
- Castellano, J. M., Garcia-Rodriguez, S., Espinosa, J. M., Millan-Linares, M. C., Rada, M. and Perona, J. S. (2019) Oleanolic acid exerts a neuroprotective effect against microglial cell activation by modulating cytokine release and antioxidant defense systems. Biomolecules 9, 683. https://doi.org/10.3390/biom9110683
- Castellano, J. M., Guinda, A., Delgado, T., Rada, M. and Cayuela, J. A. (2013) Biochemical basis of the antidiabetic activity of oleanolic acid and related pentacyclic triterpenes. Diabetes 62, 1791-1799. https://doi.org/10.2337/db12-1215
- Gaire, B. P., Sapkota, A. and Choi, J. W. (2020) BMS-986020, a specific LPA1 antagonist, provides neuroprotection against ischemic stroke in mice. Antioxidants 9, 1097. https://doi.org/10.3390/antiox9111097
- Girard, S., Murray, K. N., Rothwell, N. J., Metz, G. A. and Allan, S. M. (2014) Long-term functional recovery and compensation after cerebral ischemia in rats. Behav. Brain. Res. 270, 18-28. https://doi.org/10.1016/j.bbr.2014.05.008
- Gladstone, D. J., Black, S. E. and Hakim, A. M. (2002) Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33, 2123-2136. https://doi.org/10.1161/01.str.0000025518.34157.51
- Gu, S. (2021) Oleanolic acid improved inflammatory response and apoptosis of PC12 cells induced by OGD/R through downregulating miR-142-5P. Nat. Prod. Commun. 16, 1934578X211018019.
- Gudoityte, E., Arandarcikaite, O., Mazeikiene, I., Bendokas, V. and Liobikas, J. (2021) Ursolic and oleanolic acids: plant metabolites with neuroprotective potential. Int. J. Mol. Sci. 22, 4599. https://doi.org/10.3390/ijms22094599
- He, Y., Hara, H. and Nunez, G. (2016) Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012-1021. https://doi.org/10.1016/j.tibs.2016.09.002
- Ismael, S., Zhao, L., Nasoohi, S. and Ishrat, T. (2018) Inhibition of the NLRP3-inflammasome as a potential approach for neuroprotection after stroke. Sci. Rep. 8, 5971. https://doi.org/10.1038/s41598-018-24350-x
- Jayaraj, R. L., Azimullah, S., Beiram, R., Jalal, F. Y. and Rosenberg, G. A. (2019) Neuroinflammation: friend and foe for ischemic stroke. J. Neuroinflammation 16, 142. https://doi.org/10.1186/s12974-019-1516-2
- Jin, R., Yang, G. and Li, G. (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J. Leukoc. Biol. 87, 779-789. https://doi.org/10.1189/jlb.1109766
- Kelley, N., Jeltema, D., Duan, Y. and He, Y. (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 20, 3328. https://doi.org/10.3390/ijms20133328
- Kim, M. S., Han, J. Y., Kim, S. H., Jeon, D., Kim, H. Y., Lee, S. W., Rho, M. C. and Lee, K. (2018) Oleanolic acid acetate attenuates polyhexamethylene guanidine phosphate-induced pulmonary inflammation and fibrosis in mice. Respir. Physiol. Neurobiol. 252-253, 1-9. https://doi.org/10.1016/j.resp.2018.03.001
- Lapchak, P. A. (2010) A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert. Opin. Pharmacother. 11, 1753-1763. https://doi.org/10.1517/14656566.2010.493558
- Lee, C. H., Sapkota, A., Gaire, B. P. and Choi, J. W. (2020) NLRP3 Inflammasome activation is involved in LPA1-mediated brain injury after transient focal cerebral ischemia. Int. J. Mol. Sci. 21, 8595. https://doi.org/10.3390/ijms21228595
- Lenart, N., Brough, D. and Denes, A. (2016) Inflammasomes link vascular disease with neuroinflammation and brain disorders. J. Cereb. Blood Flow. Metab. 36, 1668-1685. https://doi.org/10.1177/0271678X16662043
- Liu, J. (2005) Oleanolic acid and ursolic acid: research perspectives. J. Ethnopharmacol. 100, 92-94. https://doi.org/10.1016/j.jep.2005.05.024
- MacManus, J. P. and Buchan, A. M. (2000) Apoptosis after experimental stroke: fact or fashion? J. Neurotrauma 17, 899-914. https://doi.org/10.1089/neu.2000.17.899
- Martin, R., Carvalho-Tavares, J., Hernandez, M., Arnes, M., Ruiz-Gutierrez, V. and Nieto, M. L. (2010) Beneficial actions of oleanolic acid in an experimental model of multiple sclerosis: a potential therapeutic role. Biochem. Pharmacol. 79, 198-208. https://doi.org/10.1016/j.bcp.2009.08.002
- Martin, R., Cordova, C., San Roman, J. A., Gutierrez, B., Cachofeiro, V. and Nieto, M. L. (2014) Oleanolic acid modulates the immune-inflammatory response in mice with experimental autoimmune myocarditis and protects from cardiac injury. Therapeutic implications for the human disease. J. Mol. Cell. Cardiol. 72, 250-262. https://doi.org/10.1016/j.yjmcc.2014.04.002
- Martin, R., Hernandez, M., Cordova, C. and Nieto, M. L. (2012) Natural triterpenes modulate immune-inflammatory markers of experimental autoimmune encephalomyelitis: therapeutic implications for multiple sclerosis. Br. J. Pharmacol. 166, 1708-1723. https://doi.org/10.1111/j.1476-5381.2012.01869.x
- Minutoli, L., Puzzolo, D., Rinaldi, M., Irrera, N., Marini, H., Arcoraci, V., Bitto, A., Crea, G., Pisani, A., Squadrito, F., Trichilo, V., Bruschetta, D., Micali, A. and Altavilla, D. (2016) ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid. Med. Cell. Longev. 2016, 2183026.
- Msibi, Z. N. P. and Mabandla, M. V. (2019) Oleanolic acid mitigates 6-hydroxydopamine neurotoxicity by attenuating intracellular ROS in PC12 cells and striatal microglial activation in rat brains. Front. Physiol. 10, 1059. https://doi.org/10.3389/fphys.2019.01059
- Muralikrishna Adibhatla, R. and Hatcher, J. F. (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic. Biol. Med. 40, 376-387. https://doi.org/10.1016/j.freeradbiomed.2005.08.044
- Niu, G., Sun, L., Pei, Y. and Wang, D. (2018) Oleanolic acid inhibits colorectal cancer angiogenesis by blocking the VEGFR2 signaling pathway. Anticancer Agents Med. Chem. 18, 583-590. https://doi.org/10.2174/1871520617666171020124916
- O'Collins, V. E., Macleod, M. R., Donnan, G. A., Horky, L. L., van der Worp, B. H. and Howells, D. W. (2006) 1,026 experimental treatments in acute stroke. Ann. Neurol. 59, 467-477. https://doi.org/10.1002/ana.20741
- Pu, H., Shi, Y., Zhang, L., Lu, Z., Ye, Q., Leak, R. K., Xu, F., Ma, S., Mu, H., Wei, Z., Xu, N., Xia, Y., Hu, X., Hitchens, T. K., Bennett, M. V. L. and Chen, J. (2019) Protease-independent action of tissue plasminogen activator in brain plasticity and neurological recovery after ischemic stroke. Proc. Natl. Acad. Sci. U.S.A. 116, 9115-9124. https://doi.org/10.1073/pnas.1821979116
- Rong, Z. T., Gong, X. J., Sun, H. B., Li, Y. M. and Ji, H. (2011) Protective effects of oleanolic acid on cerebral ischemic damage in vivo and H(2)O(2)-induced injury in vitro. Pharm. Biol. 49, 78-85. https://doi.org/10.3109/13880209.2010.499130
- Sairanen, T., Karjalainen-Lindsberg, M. L., Paetau, A., Ijas, P. and Lindsberg, P. J. (2006) Apoptosis dominant in the periinfarct area of human ischaemic stroke--a possible target of antiapoptotic treatments. Brain 129, 189-199. https://doi.org/10.1093/brain/awh645
- Sapkota, A., Lee, C. H., Park, S. J. and Choi, J. W. (2020) Lysophosphatidic acid receptor 5 plays a pathogenic role in brain damage after focal cerebral ischemia by modulating neuroinflammatory responses. Cells 9, 1446. https://doi.org/10.3390/cells9061446
- Schmidt-Pogoda, A., Bonberg, N., Koecke, M. H. M., Strecker, J. K., Wellmann, J., Bruckmann, N. M., Beuker, C., Schabitz, W. R., Meuth, S. G., Wiendl, H., Minnerup, H. and Minnerup, J. (2020) Why most acute stroke studies are positive in animals but not in patients: a systematic comparison of preclinical, early phase, and phase 3 clinical trials of neuroprotective agents. Ann. Neurol. 87, 40-51. https://doi.org/10.1002/ana.25643
- Shah, I. M., Macrae, I. M. and Di Napoli, M. (2009) Neuroinflammation and neuroprotective strategies in acute ischaemic stroke - from bench to bedside. Curr. Mol. Med. 9, 336-354. https://doi.org/10.2174/156652409787847236
- Shi, Y. J., Sun, L. L., Ji, X., Shi, R., Xu, F. and Gu, J. H. (2021) Neuroprotective effects of oleanolic acid against cerebral ischemiareperfusion injury in mice. Exp. Neurol. 343, 113785. https://doi.org/10.1016/j.expneurol.2021.113785
- Wang, J. L., Ren, C. H., Feng, J., Ou, C. H. and Liu, L. (2020) Oleanolic acid inhibits mouse spinal cord injury through suppressing inflammation and apoptosis via the blockage of p38 and JNK MAPKs. Biomed. Pharmacother. 123, 109752. https://doi.org/10.1016/j.biopha.2019.109752
- Wang, K., Sun, W., Zhang, L., Guo, W., Xu, J., Liu, S., Zhou, Z. and Zhang, Y. (2018a) Oleanolic acid ameliorates Abeta25-35 injectioninduced memory deficit in Alzheimer's disease model rats by maintaining synaptic plasticity. CNS Neurol. Disord. Drug Targets 17, 389-399. https://doi.org/10.2174/1871527317666180525113109
- Wang, W., Chen, K., Xia, Y., Mo, W., Wang, F., Dai, W. and Niu, P. (2018b) The hepatoprotection by oleanolic acid preconditioning: focusing on PPARalpha activation. PPAR Res. 2018, 3180396. https://doi.org/10.1155/2018/3180396
- Xu, K., Chu, F., Li, G., Xu, X., Wang, P., Song, J., Zhou, S. and Lei, H. (2014) Oleanolic acid synthetic oligoglycosides: a review on recent progress in biological activities. Pharmazie 69, 483-495.
- Xu, Q., Zhao, B., Ye, Y., Li, Y., Zhang, Y., Xiong, X. and Gu, L. (2021) Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke. J. Neuroinflammation 18, 123. https://doi.org/10.1186/s12974-021-02137-8
- Xu, S., Lu, J., Shao, A., Zhang, J. H. and Zhang, J. (2020) Glial cells: role of the immune response in ischemic stroke. Front. Immunol. 11, 294. https://doi.org/10.3389/fimmu.2020.00294
- Yang, F., Wang, Z., Wei, X., Han, H., Meng, X., Zhang, Y., Shi, W., Li, F., Xin, T., Pang, Q. and Yi, F. (2014) NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J. Cereb. Blood Flow Metab. 34, 660-667. https://doi.org/10.1038/jcbfm.2013.242
- Ye, X., Shen, T., Hu, J., Zhang, L., Zhang, Y., Bao, L., Cui, C., Jin, G., Zan, K., Zhang, Z., Yang, X., Shi, H., Zu, J., Yu, M., Song, C., Wang, Y., Qi, S. and Cui, G. (2017) Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Exp. Neurol. 292, 46-55. https://doi.org/10.1016/j.expneurol.2017.03.002
- Yenari, M. A., Kauppinen, T. M. and Swanson, R. A. (2010) Microglial activation in stroke: therapeutic targets. Neurotherapeutics 7, 378-391. https://doi.org/10.1016/j.nurt.2010.07.005
- Ziberna, L., Samec, D., Mocan, A., Nabavi, S. F., Bishayee, A., Farooqi, A. A., Sureda, A. and Nabavi, S. M. (2017) Oleanolic acid alters multiple cell signaling pathways: implication in cancer prevention and therapy. Int. J. Mol. Sci. 18, 643. https://doi.org/10.3390/ijms18030643