DOI QR코드

DOI QR Code

Vinyl-Stilbene Inhibits Human Norovirus RNA Replication by Activating Heat-Shock Factor-1

  • Lee, Ahrim (College of Pharmacy, Dongguk University-Seoul) ;
  • Sung, Jieun (College of Pharmacy, Dongguk University-Seoul) ;
  • Harmalkar, Dipesh S. (College of Pharmacy, Dongguk University-Seoul) ;
  • Kang, Hyeseul (College of Pharmacy, Dongguk University-Seoul) ;
  • Lee, Hwayoung (College of Pharmacy, Dongguk University-Seoul) ;
  • Lee, Kyeong (College of Pharmacy, Dongguk University-Seoul) ;
  • Lee, Choongho (College of Pharmacy, Dongguk University-Seoul)
  • Received : 2021.09.28
  • Accepted : 2021.10.25
  • Published : 2022.01.01

Abstract

Norovirus (NV) is the most common cause of viral gastroenteritis, with the potential to develop into a fatal disease in those who are immuno-compromised, and effective vaccines and treatments are still non-existent. In this study, we aimed to elucidate the molecular mechanism of the previously identified NV replication inhibitor utilizing a vinyl-stilbene backbone, AC-1858. First, we confirmed the inhibition of the NV RNA replication by a structural analog of AC-1858, AC-2288 with its exclusive cytoplasmic sub-cellular localization. We further validated the induction of one specific host factor, the phosphorylated form of heat shock factor (HSF)-1, and its increased nuclear localization by AC-1858 treatment. Finally, we verified the positive and negative impact of the siRNA-mediated downregulation and lentivirus-mediated overexpression of HSF-1 on NV RNA replication. In conclusion, these data suggest the restrictive role of the host factor HSF-1 in overall viral RNA genome replication during the NV life cycle.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1F1A1058628). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2018R1A5A2023127).

References

  1. Atmar, R. L., Baehner, F., Cramer, J. P., Lloyd, E., Sherwood, J., Borkowski, A. and Mendelman, P. M.; NOR-201 Study Group (2019) Persistence of antibodies to 2 virus-like particle norovirus vaccine candidate formulations in healthy adults: 1-year follow-up with memory probe vaccination. J. Infect. Dis. 220, 603-614. https://doi.org/10.1093/infdis/jiz170
  2. Atmar, R. L. and Estes, M. K. (2006) The epidemiologic and clinical importance of norovirus infection. Gastroenterol. Clin. North Am. 35, 275-290. https://doi.org/10.1016/j.gtc.2006.03.001
  3. Bok, K. and Green, K. Y. (2012) Norovirus gastroenteritis in immunocompromised patients. N. Engl. J. Med. 367, 2126-2132. https://doi.org/10.1056/NEJMra1207742
  4. Chang, K. O., Sosnovtsev, S. V., Belliot, G., King, A. D. and Green, K. Y. (2006) Stable expression of a Norwalk virus RNA replicon in a human hepatoma cell line. Virology 353, 463-473. https://doi.org/10.1016/j.virol.2006.06.006
  5. de Graaf, M., van Beek, J. and Koopmans, M. P. (2016) Human norovirus transmission and evolution in a changing world. Nat. Rev. Microbiol. 14, 421-433. https://doi.org/10.1038/nrmicro.2016.48
  6. Glass, R. I., Parashar, U. D. and Estes, M. K. (2009) Norovirus gastroenteritis. N. Engl. J. Med. 361, 1776-1785. https://doi.org/10.1056/NEJMra0804575
  7. Hardy, M. E. (2005) Norovirus protein structure and function. FEMS Microbiol. Lett. 253, 1-8. https://doi.org/10.1016/j.femsle.2005.08.031
  8. Harmalkar, D. S., Lee, S. J., Lu, Q., Kim, M. I., Park, J., Lee, H., Park, M., Lee, A., Lee, C. and Lee, K. (2019) Identification of novel non-nucleoside vinyl-stilbene analogs as potent norovirus replication inhibitors with a potential host-targeting mechanism. Eur. J. Med. Chem. 184, 111733. https://doi.org/10.1016/j.ejmech.2019.111733
  9. Lee, H. and Ko, G. (2016) Antiviral effect of vitamin A on norovirus infection via modulation of the gut microbiome. Sci. Rep. 6, 25835. https://doi.org/10.1038/srep25835
  10. Lesch, H., Laitinen, A., Peixoto, C., Vicente, T., Makkonen, K., Laitinen, L., Pikkarainen, J., Samaranayake, H., Alves, P., Carrondo, M., Yla-Herttuala, S. and Airenne, K. J. (2011) Production and purification of lentiviral vectors generated in 293T suspension cells with baculoviral vectors. Gene Ther. 18, 531-538. https://doi.org/10.1038/gt.2010.162
  11. Ma, C., Zhang, X., You, J., Dong, M., Yun, S. and Liu, J. (2020) Effect of heat shock on murine norovirus replication in RAW264.7 cells. Microb. Pathog. 142, 104102. https://doi.org/10.1016/j.micpath.2020.104102
  12. Morillo, S. G. and Timenetsky, M. d. C. S. T. (2011) Norovirus: an overview. Rev. Assoc. Med. Bras. 57, 453-458. https://doi.org/10.1016/S0104-4230(11)70094-X
  13. Thorne, L. G. and Goodfellow, I. G. (2014) Norovirus gene expression and replication. J. Gen. Virol. 95, 278-291. https://doi.org/10.1099/vir.0.059634-0
  14. Turcios, R. M., Widdowson, M. A., Sulka, A. C., Mead, P. S. and Glass, R. I. (2006) Reevaluation of epidemiological criteria for identifying outbreaks of acute gastroenteritis due to norovirus: United States, 1998-2000. Clin. Infect. Dis. 42, 964-969. https://doi.org/10.1086/500940
  15. Vashist, S., Urena, L., Gonzalez-Hernandez, M. B., Choi, J., de Rougemont, A., Rocha-Pereira, J., Neyts, J., Hwang, S., Wobus, C. E. and Goodfellow, I. (2015) Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J. Virol. 89, 6352-6363. https://doi.org/10.1128/JVI.00315-15
  16. Vinje, J., Green, J., Lewis, D., Gallimore, C., Brown, D. and Koopmans, M. (2000) Genetic polymorphism across regions of the three open reading frames of "Norwalk-like viruses". Arch. Virol. 145, 223-241. https://doi.org/10.1007/s007050050020
  17. Wobus, C. E., Thackray, L. B. and Virgin, H. W., IV (2006) Murine norovirus: a model system to study norovirus biology and pathogenesis. J. Virol. 80, 5104-5112. https://doi.org/10.1128/JVI.02346-05