과제정보
This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (2019M3A9H1103495).
참고문헌
- Antico Arciuch, V. G., Elguero, M. E., Poderoso, J. J. and Carreras, M. C. (2012) Mitochondrial regulation of cell cycle and proliferation. Antioxid. Redox Signal. 16, 1150-1180. https://doi.org/10.1089/ars.2011.4085
- Bhatia, D., Chung, K. P., Nakahira, K., Patino, E., Rice, M. C., Torres, L. K., Muthukumar, T., Choi, A. M., Akchurin, O. M. and Choi, M. E. (2019) Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 4, e132826. https://doi.org/10.1172/jci.insight.132826
- Breyer, M. D. and Susztak, K. (2016) Developing treatments for chronic kidney disease in the 21st century. Semin. Nephrol. 36, 436-447. https://doi.org/10.1016/j.semnephrol.2016.08.001
- Feng, J., Li, J., Wu, L., Yu, Q., Ji, J., Wu, J., Dai, W. and Guo, C. (2020) Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 39, 126. https://doi.org/10.1186/s13046-020-01629-4
- Fu, Z., Jiao, Y., Wang, J., Zhang, Y., Shen, M., Reiter, R. J., Xi, Q. and Chen, Y. (2020) Cardioprotective role of melatonin in acute myocardial infarction. Front. Physiol. 11, 366. https://doi.org/10.3389/fphys.2020.00366
- Galli, S., Labato, M. I., Bal de Kier Joffe, E., Carreras, M. C. and Poderoso, J. J. (2003) Decreased mitochondrial nitric oxide synthase activity and hydrogen peroxide relate persistent tumoral proliferation to embryonic behavior. Cancer Res. 63, 6370-6377.
- GBD Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709-733. https://doi.org/10.1016/s0140-6736(20)30045-3
- Gopu, V., Fan, L., Shetty, R. S., Nagaraja, M. R. and Shetty, S. (2020) Caveolin-1 scaffolding domain peptide regulates glucose metabolism in lung fibrosis. JCI Insight 5, e137969. https://doi.org/10.1172/jci.insight.137969
- Han, Y. S., Kim, S. M., Lee, J. H., Jung, S. K., Noh, H. and Lee, S. H. (2019) Melatonin protects chronic kidney disease mesenchymal stem cells against senescence via PrPC-dependent enhancement of the mitochondrial function. J. Pineal Res. 66, e12535. https://doi.org/10.1111/jpi.12535
- Han, Y. S., Yoon, Y. M., Go, G., Lee, J. H. and Lee, S. H. (2020) Melatonin protects human renal proximal tubule epithelial cells against high glucose-mediated fibrosis via the cellular prion protein-TGFbeta-Smad signaling axis. Int. J. Med. Sci. 17, 1235-1245. https://doi.org/10.7150/ijms.42603
- Hevia, D., Gonzalez-Menendez, P., Fernandez-Fernandez, M., Cueto, S., Rodriguez-Gonzalez, P., Garcia-Alonso, J. I., Mayo, J. C. and Sainz, R. M. (2017) Melatonin decreases glucose metabolism in prostate cancer cells: a (13)C stable isotope-resolved metabolomic study. Int. J. Mol. Sci. 18, 1620. https://doi.org/10.3390/ijms18081620
- Hickson, L. J., Eirin, A. and Lerman, L. O. (2016) Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int. 89, 767-778. https://doi.org/10.1016/j.kint.2015.11.023
- Hill, S. M., Belancio, V. P., Dauchy, R. T., Xiang, S., Brimer, S., Mao, L., Hauch, A., Lundberg, P. W., Summers, W., Yuan, L., Frasch, T. and Blask, D. E. (2015) Melatonin: an inhibitor of breast cancer. Endocr. Relat. Cancer 22, R183-R204.
- Hu, C. and Li, L. (2018) Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J. Cell. Mol. Med. 22, 1428-1442. https://doi.org/10.1111/jcmm.13492
- Hu, C. and Li, L. (2019) Melatonin plays critical role in mesenchymal stem cell-based regenerative medicine in vitro and in vivo. Stem Cell Res. Ther. 10, 13. https://doi.org/10.1186/s13287-018-1114-8
- Kato, M. and Natarajan, R. (2019) Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol. 15, 327-345. https://doi.org/10.1038/s41581-019-0135-6
- Keshtkar, S., Azarpira, N. and Ghahremani, M. H. (2018) Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res. Ther. 9, 63. https://doi.org/10.1186/s13287-018-0791-7
- Lan, R., Geng, H., Singha, P. K., Saikumar, P., Bottinger, E. P., Weinberg, J. M. and Venkatachalam, M. A. (2016) Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol. 27, 3356-3367. https://doi.org/10.1681/ASN.2015020177
- Lee, J. H., Yoon, Y. M., Han, Y. S., Jung, S. K. and Lee, S. H. (2019) Melatonin protects mesenchymal stem cells from autophagy-mediated death under ischaemic ER-stress conditions by increasing prion protein expression. Cell Prolif. 52, e12545. https://doi.org/10.1111/cpr.12545
- Lee, J. H., Yoon, Y. M., Song, K. H., Noh, H. and Lee, S. H. (2020) Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. Aging Cell 19, e13111. https://doi.org/10.1111/acel.13111
- Lee, J. H., Yun, C. W., Hur, J. and Lee, S. H. (2018) Fucoidan rescues p-cresol-induced cellular senescence in mesenchymal stem cells via FAK-Akt-TWIST axis. Mar. Drugs 16, 121. https://doi.org/10.3390/md16040121
- Li, Y., Li, S., Zhou, Y., Meng, X., Zhang, J. J., Xu, D. P. and Li, H. B. (2017) Melatonin for the prevention and treatment of cancer. Oncotarget 8, 39896-39921. https://doi.org/10.18632/oncotarget.16379
- Liu, H., Liu, N., Cheng, Y., Jin, W., Zhang, P., Wang, X., Yang, H., Xu, X., Wang, Z. and Tu, Y. (2017) Hexokinase 2 (HK2), the tumor promoter in glioma, is downregulated by miR-218/Bmi1 pathway. PLoS ONE 12, e0189353. https://doi.org/10.1371/journal.pone.0189353
- Lv, J. C. and Zhang, L. X. (2019) Prevalence and disease burden of chronic kidney disease. Adv. Exp. Med. Biol. 1165, 3-15. https://doi.org/10.1007/978-981-13-8871-2_1
- Mao, L., Dauchy, R. T., Blask, D. E., Dauchy, E. M., Slakey, L. M., Brimer, S., Yuan, L., Xiang, S., Hauch, A., Smith, K., Frasch, T., Belancio, V. P., Wren, M. A. and Hill, S. M. (2016) Melatonin suppression of aerobic glycolysis (Warburg effect), survival signalling and metastasis in human leiomyosarcoma. J. Pineal Res. 60, 167-177. https://doi.org/10.1111/jpi.12298
- Mastrolia, I., Foppiani, E. M., Murgia, A., Candini, O., Samarelli, A. V., Grisendi, G., Veronesi, E., Horwitz, E. M. and Dominici, M. (2019) Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem Cells Transl. Med. 8, 1135-1148. https://doi.org/10.1002/sctm.19-0044
- Nigam, S. K. and Bush, K. T. (2019) Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat. Rev. Nephrol. 15, 301-316. https://doi.org/10.1038/s41581-019-0111-1
- Ohashi, N., Ishigaki, S. and Isobe, S. (2019) The pivotal role of melatonin in ameliorating chronic kidney disease by suppression of the renin-angiotensin system in the kidney. Hypertens. Res. 42, 761-768. https://doi.org/10.1038/s41440-018-0186-2
- Pittenger, M. F., Discher, D. E., Peault, B. M., Phinney, D. G., Hare, J. M. and Caplan, A. I. (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen. Med. 4, 22. https://doi.org/10.1038/s41536-019-0083-6
- Qi, X. and Wang, J. (2020) Melatonin improves mitochondrial biogenesis through the AMPK/PGC1alpha pathway to attenuate ischemia/reperfusion-induced myocardial damage. Aging (Albany NY) 12, 7299-7312. https://doi.org/10.18632/aging.103078
- Rabbani, N. and Thornalley, P. J. (2019) Hexokinase-2 glycolytic overload in diabetes and ischemia-reperfusion injury. Trends Endocrinol. Metab. 30, 419-431. https://doi.org/10.1016/j.tem.2019.04.011
- Reiter, R. J., Rosales-Corral, S. A., Tan, D. X., Acuna-Castroviejo, D., Qin, L., Yang, S. F. and Xu, K. (2017) Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. Int. J. Mol. Sci. 18, 843. https://doi.org/10.3390/ijms18040843
- Reiter, R. J., Sharma, R., Ma, Q., Rorsales-Corral, S. and de Almeida Chuffa, L. G. (2020) Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cell. Mol. Life Sci. 77, 2527-2542. https://doi.org/10.1007/s00018-019-03438-1
- Reiter, R. J., Sharma, R. and Rosales-Corral, S. (2021) Anti-Warburg effect of melatonin: a proposed mechanism to explain its inhibition of multiple diseases. Int. J. Mol. Sci. 22, 764. https://doi.org/10.3390/ijms22020764
- Romagnani, P., Remuzzi, G., Glassock, R., Levin, A., Jager, K. J., Tonelli, M., Massy, Z., Wanner, C. and Anders, H. J. (2017) Chronic kidney disease. Nat. Rev. Dis. Primers 3, 17088. https://doi.org/10.1038/nrdp.2017.88
- Sanchez-Sanchez, A. M., Antolin, I., Puente-Moncada, N., Suarez, S., Gomez-Lobo, M., Rodriguez, C. and Martin, V. (2015) Melatonin cytotoxicity is associated to Warburg effect inhibition in Ewing sarcoma cells. PLoS ONE 10, e0135420. https://doi.org/10.1371/journal.pone.0135420
- Smith, J. A., Stallons, L. J. and Schnellmann, R. G. (2014) Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 307, F435-F444.
- Talib, W. H. (2018) Melatonin and cancer hallmarks. Molecules 23, 518. https://doi.org/10.3390/molecules23030518
- Thalakiriyawa, D. S., Jayasooriya, P. R. and Dissanayaka, W. L. (2021) Regenerative potential of mesenchymal stem cell derived extracellular vesicles. Curr. Mol. Med. doi: 10.2174/1566524021666210211114453 [Online ahead of print].
- Tordjman, S., Chokron, S., Delorme, R., Charrier, A., Bellissant, E., Jaafari, N. and Fougerou, C. (2017) Melatonin: Pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol. 15, 434-443. https://doi.org/10.2174/1570159X14666161228122115
- Wang, Y., Wang, P., Zheng, X. and Du, X. (2018) Therapeutic strategies of melatonin in cancer patients: a systematic review and metaanalysis. OncoTargets Ther. 11, 7895-7908. https://doi.org/10.2147/OTT.S174100
- Xie, N., Tan, Z., Banerjee, S., Cui, H., Ge, J., Liu, R. M., Bernard, K., Thannickal, V. J. and Liu, G. (2015) Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 192, 1462-1474. https://doi.org/10.1164/rccm.201504-0780oc
- Yan, X. J., Yu, X., Wang, X. P., Jiang, J. F., Yuan, Z. Y., Lu, X., Lei, F. and Xing, D. M. (2017) Mitochondria play an important role in the cell proliferation suppressing activity of berberine. Sci. Rep. 7, 41712. https://doi.org/10.1038/srep41712
- Yao, C. H., Wang, R., Wang, Y., Kung, C. P., Weber, J. D. and Patti, G. J. (2019) Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. eLife 8, e41351. https://doi.org/10.7554/elife.41351
- Yin, X., Choudhury, M., Kang, J. H., Schaefbauer, K. J., Jung, M. Y., Andrianifahanana, M., Hernandez, D. M. and Leof, E. B. (2019) Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β. Sci. Signal. 12, eaax4067. https://doi.org/10.1126/scisignal.aax4067
- Yoon, Y. M., Go, G., Yun, C. W., Lim, J. H., Lee, J. H. and Lee, S. H. (2020a) Melatonin suppresses renal cortical fibrosis by inhibiting cytoskeleton reorganization and mitochondrial dysfunction through regulation of miR-4516. Int. J. Mol. Sci. 21, 5323. https://doi.org/10.3390/ijms21155323
- Yoon, Y. M., Go, G., Yun, C. W., Lim, J. H. and Lee, S. H. (2020b) Knockdown of CK2alpha reduces P-cresol-induced fibrosis in human renal proximal tubule epithelial cells via the downregulation of profilin-1. Int. J. Med. Sci. 17, 2850-2860. https://doi.org/10.7150/ijms.48429
- Yoon, Y. M., Kim, H. J., Lee, J. H. and Lee, S. H. (2019) Melatonin enhances mitophagy by upregulating expression of heat shock 70 kDa protein 1L in human mesenchymal stem cells under oxidative stress. Int. J. Mol. Sci. 20, 4545. https://doi.org/10.3390/ijms20184545
- Yoon, Y. M., Lee, J. H., Song, K. H., Noh, H. and Lee, S. H. (2020c) Melatonin-stimulated exosomes enhance the regenerative potential of chronic kidney disease-derived mesenchymal stem/stromal cells via cellular prion proteins. J. Pineal Res. 68, e12632. https://doi.org/10.1111/jpi.12632
- Yuan, X., Logan, T. M. and Ma, T. (2019) Metabolism in human mesenchymal stromal cells: a missing link between hMSC biomanufacturing and therapy? Front. Immunol. 10, 977. https://doi.org/10.3389/fimmu.2019.00977
- Yun, C. W. and Lee, S. H. (2019) Potential and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for acute/chronic kidney disease. Int. J. Mol. Sci. 20, 1619. https://doi.org/10.3390/ijms20071619