DOI QR코드

DOI QR Code

Melatonin Protects Chronic Kidney Disease Mesenchymal Stem/Stromal Cells against Accumulation of Methylglyoxal via Modulation of Hexokinase-2 Expression

  • Go, Gyeongyun (Department of Biochemistry, Soonchunhyang University College of Medicine) ;
  • Yoon, Yeo Min (Medical Science Research Institute, Soonchunhyang University Seoul Hospital) ;
  • Yoon, Sungtae (Stembio Ltd.) ;
  • Lee, Gaeun (Department of Biochemistry, Soonchunhyang University College of Medicine) ;
  • Lim, Ji Ho (Department of Biochemistry, Soonchunhyang University College of Medicine) ;
  • Han, Su-Yeon (Stembio Ltd.) ;
  • Lee, Sang Hun (Department of Biochemistry, Soonchunhyang University College of Medicine)
  • Received : 2021.03.29
  • Accepted : 2021.06.03
  • Published : 2022.01.01

Abstract

Treatment options for patients with chronic kidney disease (CKD) are currently limited; therefore, there has been significant interest in applying mesenchymal stem/stromal cell (MSC)-based therapy to treat CKD. However, MSCs harvested from CKD patients tend to show diminished viability and proliferation due to sustained exposure to uremic toxins in the CKD environment, which limits their utility for cell therapy. The application of melatonin has been demonstrated to improve the therapeutic efficacy of MSCs derived from and engrafted to tissues in patients suffering from CKD, although the underlying biological mechanism has not been elucidated. In this study, we observed overexpression of hexokinase-2 (HK2) in serum samples of CKD patients and MSCs harvested from an adenine-fed CKD mouse model (CKD-mMSCs). HK2 upregulation led to increased production levels of methylglyoxal (MG), a toxic metabolic intermediate of abnormal glycolytic processes. The overabundance of HK2 and MG was associated with impaired mitochondrial function and low cell proliferation in CKD-mMSCs. Melatonin treatment inhibited the increases in HK2 and MG levels, and further improved mitochondrial function, glycolytic metabolism, and cell proliferation. Our findings suggest that identifying and characterizing metabolic regulators such as HK2 in CKD may improve the efficacy of MSCs for treating CKD and other kidney disorders.

Keywords

Acknowledgement

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (2019M3A9H1103495).

References

  1. Antico Arciuch, V. G., Elguero, M. E., Poderoso, J. J. and Carreras, M. C. (2012) Mitochondrial regulation of cell cycle and proliferation. Antioxid. Redox Signal. 16, 1150-1180. https://doi.org/10.1089/ars.2011.4085
  2. Bhatia, D., Chung, K. P., Nakahira, K., Patino, E., Rice, M. C., Torres, L. K., Muthukumar, T., Choi, A. M., Akchurin, O. M. and Choi, M. E. (2019) Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 4, e132826. https://doi.org/10.1172/jci.insight.132826
  3. Breyer, M. D. and Susztak, K. (2016) Developing treatments for chronic kidney disease in the 21st century. Semin. Nephrol. 36, 436-447. https://doi.org/10.1016/j.semnephrol.2016.08.001
  4. Feng, J., Li, J., Wu, L., Yu, Q., Ji, J., Wu, J., Dai, W. and Guo, C. (2020) Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 39, 126. https://doi.org/10.1186/s13046-020-01629-4
  5. Fu, Z., Jiao, Y., Wang, J., Zhang, Y., Shen, M., Reiter, R. J., Xi, Q. and Chen, Y. (2020) Cardioprotective role of melatonin in acute myocardial infarction. Front. Physiol. 11, 366. https://doi.org/10.3389/fphys.2020.00366
  6. Galli, S., Labato, M. I., Bal de Kier Joffe, E., Carreras, M. C. and Poderoso, J. J. (2003) Decreased mitochondrial nitric oxide synthase activity and hydrogen peroxide relate persistent tumoral proliferation to embryonic behavior. Cancer Res. 63, 6370-6377.
  7. GBD Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709-733. https://doi.org/10.1016/s0140-6736(20)30045-3
  8. Gopu, V., Fan, L., Shetty, R. S., Nagaraja, M. R. and Shetty, S. (2020) Caveolin-1 scaffolding domain peptide regulates glucose metabolism in lung fibrosis. JCI Insight 5, e137969. https://doi.org/10.1172/jci.insight.137969
  9. Han, Y. S., Kim, S. M., Lee, J. H., Jung, S. K., Noh, H. and Lee, S. H. (2019) Melatonin protects chronic kidney disease mesenchymal stem cells against senescence via PrPC-dependent enhancement of the mitochondrial function. J. Pineal Res. 66, e12535. https://doi.org/10.1111/jpi.12535
  10. Han, Y. S., Yoon, Y. M., Go, G., Lee, J. H. and Lee, S. H. (2020) Melatonin protects human renal proximal tubule epithelial cells against high glucose-mediated fibrosis via the cellular prion protein-TGFbeta-Smad signaling axis. Int. J. Med. Sci. 17, 1235-1245. https://doi.org/10.7150/ijms.42603
  11. Hevia, D., Gonzalez-Menendez, P., Fernandez-Fernandez, M., Cueto, S., Rodriguez-Gonzalez, P., Garcia-Alonso, J. I., Mayo, J. C. and Sainz, R. M. (2017) Melatonin decreases glucose metabolism in prostate cancer cells: a (13)C stable isotope-resolved metabolomic study. Int. J. Mol. Sci. 18, 1620. https://doi.org/10.3390/ijms18081620
  12. Hickson, L. J., Eirin, A. and Lerman, L. O. (2016) Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int. 89, 767-778. https://doi.org/10.1016/j.kint.2015.11.023
  13. Hill, S. M., Belancio, V. P., Dauchy, R. T., Xiang, S., Brimer, S., Mao, L., Hauch, A., Lundberg, P. W., Summers, W., Yuan, L., Frasch, T. and Blask, D. E. (2015) Melatonin: an inhibitor of breast cancer. Endocr. Relat. Cancer 22, R183-R204.
  14. Hu, C. and Li, L. (2018) Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J. Cell. Mol. Med. 22, 1428-1442. https://doi.org/10.1111/jcmm.13492
  15. Hu, C. and Li, L. (2019) Melatonin plays critical role in mesenchymal stem cell-based regenerative medicine in vitro and in vivo. Stem Cell Res. Ther. 10, 13. https://doi.org/10.1186/s13287-018-1114-8
  16. Kato, M. and Natarajan, R. (2019) Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol. 15, 327-345. https://doi.org/10.1038/s41581-019-0135-6
  17. Keshtkar, S., Azarpira, N. and Ghahremani, M. H. (2018) Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res. Ther. 9, 63. https://doi.org/10.1186/s13287-018-0791-7
  18. Lan, R., Geng, H., Singha, P. K., Saikumar, P., Bottinger, E. P., Weinberg, J. M. and Venkatachalam, M. A. (2016) Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol. 27, 3356-3367. https://doi.org/10.1681/ASN.2015020177
  19. Lee, J. H., Yoon, Y. M., Han, Y. S., Jung, S. K. and Lee, S. H. (2019) Melatonin protects mesenchymal stem cells from autophagy-mediated death under ischaemic ER-stress conditions by increasing prion protein expression. Cell Prolif. 52, e12545. https://doi.org/10.1111/cpr.12545
  20. Lee, J. H., Yoon, Y. M., Song, K. H., Noh, H. and Lee, S. H. (2020) Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. Aging Cell 19, e13111. https://doi.org/10.1111/acel.13111
  21. Lee, J. H., Yun, C. W., Hur, J. and Lee, S. H. (2018) Fucoidan rescues p-cresol-induced cellular senescence in mesenchymal stem cells via FAK-Akt-TWIST axis. Mar. Drugs 16, 121. https://doi.org/10.3390/md16040121
  22. Li, Y., Li, S., Zhou, Y., Meng, X., Zhang, J. J., Xu, D. P. and Li, H. B. (2017) Melatonin for the prevention and treatment of cancer. Oncotarget 8, 39896-39921. https://doi.org/10.18632/oncotarget.16379
  23. Liu, H., Liu, N., Cheng, Y., Jin, W., Zhang, P., Wang, X., Yang, H., Xu, X., Wang, Z. and Tu, Y. (2017) Hexokinase 2 (HK2), the tumor promoter in glioma, is downregulated by miR-218/Bmi1 pathway. PLoS ONE 12, e0189353. https://doi.org/10.1371/journal.pone.0189353
  24. Lv, J. C. and Zhang, L. X. (2019) Prevalence and disease burden of chronic kidney disease. Adv. Exp. Med. Biol. 1165, 3-15. https://doi.org/10.1007/978-981-13-8871-2_1
  25. Mao, L., Dauchy, R. T., Blask, D. E., Dauchy, E. M., Slakey, L. M., Brimer, S., Yuan, L., Xiang, S., Hauch, A., Smith, K., Frasch, T., Belancio, V. P., Wren, M. A. and Hill, S. M. (2016) Melatonin suppression of aerobic glycolysis (Warburg effect), survival signalling and metastasis in human leiomyosarcoma. J. Pineal Res. 60, 167-177. https://doi.org/10.1111/jpi.12298
  26. Mastrolia, I., Foppiani, E. M., Murgia, A., Candini, O., Samarelli, A. V., Grisendi, G., Veronesi, E., Horwitz, E. M. and Dominici, M. (2019) Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem Cells Transl. Med. 8, 1135-1148. https://doi.org/10.1002/sctm.19-0044
  27. Nigam, S. K. and Bush, K. T. (2019) Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat. Rev. Nephrol. 15, 301-316. https://doi.org/10.1038/s41581-019-0111-1
  28. Ohashi, N., Ishigaki, S. and Isobe, S. (2019) The pivotal role of melatonin in ameliorating chronic kidney disease by suppression of the renin-angiotensin system in the kidney. Hypertens. Res. 42, 761-768. https://doi.org/10.1038/s41440-018-0186-2
  29. Pittenger, M. F., Discher, D. E., Peault, B. M., Phinney, D. G., Hare, J. M. and Caplan, A. I. (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen. Med. 4, 22. https://doi.org/10.1038/s41536-019-0083-6
  30. Qi, X. and Wang, J. (2020) Melatonin improves mitochondrial biogenesis through the AMPK/PGC1alpha pathway to attenuate ischemia/reperfusion-induced myocardial damage. Aging (Albany NY) 12, 7299-7312. https://doi.org/10.18632/aging.103078
  31. Rabbani, N. and Thornalley, P. J. (2019) Hexokinase-2 glycolytic overload in diabetes and ischemia-reperfusion injury. Trends Endocrinol. Metab. 30, 419-431. https://doi.org/10.1016/j.tem.2019.04.011
  32. Reiter, R. J., Rosales-Corral, S. A., Tan, D. X., Acuna-Castroviejo, D., Qin, L., Yang, S. F. and Xu, K. (2017) Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. Int. J. Mol. Sci. 18, 843. https://doi.org/10.3390/ijms18040843
  33. Reiter, R. J., Sharma, R., Ma, Q., Rorsales-Corral, S. and de Almeida Chuffa, L. G. (2020) Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cell. Mol. Life Sci. 77, 2527-2542. https://doi.org/10.1007/s00018-019-03438-1
  34. Reiter, R. J., Sharma, R. and Rosales-Corral, S. (2021) Anti-Warburg effect of melatonin: a proposed mechanism to explain its inhibition of multiple diseases. Int. J. Mol. Sci. 22, 764. https://doi.org/10.3390/ijms22020764
  35. Romagnani, P., Remuzzi, G., Glassock, R., Levin, A., Jager, K. J., Tonelli, M., Massy, Z., Wanner, C. and Anders, H. J. (2017) Chronic kidney disease. Nat. Rev. Dis. Primers 3, 17088. https://doi.org/10.1038/nrdp.2017.88
  36. Sanchez-Sanchez, A. M., Antolin, I., Puente-Moncada, N., Suarez, S., Gomez-Lobo, M., Rodriguez, C. and Martin, V. (2015) Melatonin cytotoxicity is associated to Warburg effect inhibition in Ewing sarcoma cells. PLoS ONE 10, e0135420. https://doi.org/10.1371/journal.pone.0135420
  37. Smith, J. A., Stallons, L. J. and Schnellmann, R. G. (2014) Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 307, F435-F444.
  38. Talib, W. H. (2018) Melatonin and cancer hallmarks. Molecules 23, 518. https://doi.org/10.3390/molecules23030518
  39. Thalakiriyawa, D. S., Jayasooriya, P. R. and Dissanayaka, W. L. (2021) Regenerative potential of mesenchymal stem cell derived extracellular vesicles. Curr. Mol. Med. doi: 10.2174/1566524021666210211114453 [Online ahead of print].
  40. Tordjman, S., Chokron, S., Delorme, R., Charrier, A., Bellissant, E., Jaafari, N. and Fougerou, C. (2017) Melatonin: Pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol. 15, 434-443. https://doi.org/10.2174/1570159X14666161228122115
  41. Wang, Y., Wang, P., Zheng, X. and Du, X. (2018) Therapeutic strategies of melatonin in cancer patients: a systematic review and metaanalysis. OncoTargets Ther. 11, 7895-7908. https://doi.org/10.2147/OTT.S174100
  42. Xie, N., Tan, Z., Banerjee, S., Cui, H., Ge, J., Liu, R. M., Bernard, K., Thannickal, V. J. and Liu, G. (2015) Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 192, 1462-1474. https://doi.org/10.1164/rccm.201504-0780oc
  43. Yan, X. J., Yu, X., Wang, X. P., Jiang, J. F., Yuan, Z. Y., Lu, X., Lei, F. and Xing, D. M. (2017) Mitochondria play an important role in the cell proliferation suppressing activity of berberine. Sci. Rep. 7, 41712. https://doi.org/10.1038/srep41712
  44. Yao, C. H., Wang, R., Wang, Y., Kung, C. P., Weber, J. D. and Patti, G. J. (2019) Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. eLife 8, e41351. https://doi.org/10.7554/elife.41351
  45. Yin, X., Choudhury, M., Kang, J. H., Schaefbauer, K. J., Jung, M. Y., Andrianifahanana, M., Hernandez, D. M. and Leof, E. B. (2019) Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β. Sci. Signal. 12, eaax4067. https://doi.org/10.1126/scisignal.aax4067
  46. Yoon, Y. M., Go, G., Yun, C. W., Lim, J. H., Lee, J. H. and Lee, S. H. (2020a) Melatonin suppresses renal cortical fibrosis by inhibiting cytoskeleton reorganization and mitochondrial dysfunction through regulation of miR-4516. Int. J. Mol. Sci. 21, 5323. https://doi.org/10.3390/ijms21155323
  47. Yoon, Y. M., Go, G., Yun, C. W., Lim, J. H. and Lee, S. H. (2020b) Knockdown of CK2alpha reduces P-cresol-induced fibrosis in human renal proximal tubule epithelial cells via the downregulation of profilin-1. Int. J. Med. Sci. 17, 2850-2860. https://doi.org/10.7150/ijms.48429
  48. Yoon, Y. M., Kim, H. J., Lee, J. H. and Lee, S. H. (2019) Melatonin enhances mitophagy by upregulating expression of heat shock 70 kDa protein 1L in human mesenchymal stem cells under oxidative stress. Int. J. Mol. Sci. 20, 4545. https://doi.org/10.3390/ijms20184545
  49. Yoon, Y. M., Lee, J. H., Song, K. H., Noh, H. and Lee, S. H. (2020c) Melatonin-stimulated exosomes enhance the regenerative potential of chronic kidney disease-derived mesenchymal stem/stromal cells via cellular prion proteins. J. Pineal Res. 68, e12632. https://doi.org/10.1111/jpi.12632
  50. Yuan, X., Logan, T. M. and Ma, T. (2019) Metabolism in human mesenchymal stromal cells: a missing link between hMSC biomanufacturing and therapy? Front. Immunol. 10, 977. https://doi.org/10.3389/fimmu.2019.00977
  51. Yun, C. W. and Lee, S. H. (2019) Potential and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for acute/chronic kidney disease. Int. J. Mol. Sci. 20, 1619. https://doi.org/10.3390/ijms20071619