Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.174

Enhancement of Radiosensitivity by DNA Hypomethylating Drugs through Apoptosis and Autophagy in Human Sarcoma Cells  

Park, Moon-Taek (Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS))
Kim, Sung-Dae (Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS))
Han, Yu Kyeong (Department of Microbiology and Immunology, College of Medicine, Inje University)
Hyun, Jin Won (Jeju National University School of Medicine and Jeju Research Center for Natural Medicine)
Lee, Hae-June (Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences)
Yi, Joo Mi (Department of Microbiology and Immunology, College of Medicine, Inje University)
Publication Information
Biomolecules & Therapeutics / v.30, no.1, 2022 , pp. 80-89 More about this Journal
Abstract
The targeting of DNA methylation in cancer using DNA hypomethylating drugs has been well known to sensitize cancer cells to chemotherapy and immunotherapy by affecting multiple pathways. Herein, we investigated the combinational effects of DNA hypomethylating drugs and ionizing radiation (IR) in human sarcoma cell lines both in vitro and in vivo. Clonogenic assays were performed to determine the radiosensitizing properties of two DNA hypomethylating drugs on sarcoma cell lines we tested in this study with multiple doses of IR. We analyzed the effects of 5-aza-dC or SGI-110, as DNA hypomethylating drugs, in combination with IR in vitro on the proliferation, apoptosis, caspase-3/7 activity, migration/invasion, and Western blotting using apoptosis- or autophagy-related factors. To confirm the combined effect of DNA hypomethylating drugs and IR in our in vitro experiment, we generated the sarcoma cells in nude mouse xenograft models. Here, we found that the combination of DNA hypomethylating drugs and IR improved anticancer effects by inhibiting cell proliferation and by promoting synergistic cell death that is associated with both apoptosis and autophagy in vitro and in vivo. Our data demonstrated that the combination effects of DNA hypomethylating drugs with radiation exhibited greater cellular effects than the use of a single agent treatment, thus suggesting that the combination of DNA hypomethylating drugs and radiation may become a new radiotherapy to improve therapeutic efficacy for cancer treatment.
Keywords
DNA hypomethylating drugs; 5-aza-dC; SGI-110; Ionizing radiation; Apoptosis; Autophagy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hofstetter, B., Niemierko, A., Forrer, C., Benhattar, J., Albertini, V., Pruschy, M., Bosman, F. T., Catapano, C. V. and Ciernik, I. F. (2010) Impact of genomic methylation on radiation sensitivity of colorectal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 76, 1512-1519.   DOI
2 Jain, S., Xu, R., Prieto, V. G. and Lee, P. (2010) Molecular classification of soft tissue sarcomas and its clinical applications. Int. J. Clin. Exp. Pathol. 3, 416-428.
3 Kaminskas, E., Farrell, A., Abraham, S., Baird, A., Hsieh, L. S., Lee, S. L., Leighton, J. K., Patel, H., Rahman, A., Sridhara, R., Wang, Y. C. and Pazdur, R. (2005) Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin. Cancer Res. 11, 3604-3608.   DOI
4 Kelly, T. K., De Carvalho, D. D. and Jones, P. A. (2010) Epigenetic modifications as therapeutic targets. Nat. Biotech. 28, 1069-1078.   DOI
5 Kim, J. G., Bae, J. H., Kim, J. A., Heo, K., Yang, K. and Yi, J. M. (2014) Combination effect of epigenetic regulation and ionizing radiation in colorectal cancer cells. PLoS ONE 9, e105405.   DOI
6 Kneisl, J. S., Coleman, M. M. and Raut, C. P. (2014) Outcomes in the management of adult soft tissue sarcomas. J. Surg. Oncol. 110, 527-538.   DOI
7 Kondo, Y. and Kondo, S. (2006) Autophagy and cancer therapy. Autophagy 2, 85-90.   DOI
8 Kristensen, L. S., Nielsen, H. M. and Hansen, L. L. (2009) Epigenetics and cancer treatment. Eur. J. Pharmacol. 625, 131-142.   DOI
9 Kroemer, G. and Levine, B. (2008) Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004-1010.   DOI
10 Kwon, H. M., Kang, E. J., Kang, K., Kim, S. D., Yang, K. and Yi, J. M. (2017) Combinatorial effects of an epigenetic inhibitor and ionizing radiation contribute to targeted elimination of pancreatic cancer stem cell. Oncotarget 8, 89005-89020.   DOI
11 Taby, R. and Issa, J. P. J. (2010) Cancer epigenetics. CA Cancer J. Clin. 60, 376-392.   DOI
12 Goodhead, D. T. (1994) Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int. J. Radiat. Biol. 65, 7-17.   DOI
13 Issa, J. P., Gharibyan, V., Cortes, J., Jelinek, J., Morris, G., Verstovsek, S., Talpaz, M., Garcia-Manero, G. and Kantarjian, H. M. (2005) Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J. Clin. Oncol. 23, 3948-3956.   DOI
14 Bender, C. M., Pao, M. M. and Jones, P. A. (1998) Inhibition of DNA methylation by 5-aza-2'-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res. 58, 95-101.
15 Lambert, L. A., Qiao, N., Hunt, K. K., Lambert, D. H., Mills, G. B., Meijer, L. and Keyomarsi, K. (2008) Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res. 68, 7966-7974.   DOI
16 Qin, T., Jelinek, J., Si, J., Shu, J. and Issa, J. P. J. (2009) Mechanisms of resistance to 5-aza-2'-deoxycytidine in human cancer cell lines. Blood 113, 659-667.   DOI
17 Qiu, H., Yashiro, M., Shinto, O., Matsuzaki, T. and Hirakawa, K. (2009) DNA methyltransferase inhibitor 5-aza-CdR enhances the radiosensitivity of gastric cancer cells. Cancer Sci. 100, 181-188.   DOI
18 Schaefer, I. M., Cote, G. M. and Hornick, J. L. (2017) Contemporary sarcoma diagnosis, genetics, and genomics. J. Clin. Oncol. 36, 101-110.   DOI
19 Tsai, H. C., Li, H., Van Neste, L., Cai, Y., Robert, C., Rassool, F. V., Shin, J. J., Harbom, K. M., Beaty, R., Pappou, E., Harris, J., Yen, R. W., Ahuja, N., Brock, M. V., Stearns, V., Feller-Kopman, D., Yarmus, L. B., Lin, Y. C., Welm, A. L., Issa, J. P., Minn, I., Matsui, W., Jang, Y. Y., Sharkis, S. J., Baylin, S. B. and Zahnow, C. A. (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21, 430-446.   DOI
20 Yoo, C. B. (2007) Delivery of 5-aza-2[prime]-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res. 67, 6400-6408.   DOI
21 Issa, J. P. J. and Kantarjian, H. M. (2009) Targeting DNA methylation. Clin. Cancer Res. 15, 3938-3946.   DOI
22 Brennan, M. F., Antonescu, C. R., Moraco, N. and Singer, S. (2014) Lessons learned from the study of 10,000 patients with soft tissue sarcoma. Ann. Surg. 260, 416-422.   DOI
23 Dalby, K., Tekedereli, I., Lopez-Berestein, G. and Ozpolat, B. (2010) Targeting the pro-death and pro-survival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 6, 322-329.   DOI
24 Dinh, T. A., Oliva, E. A., Fuller, A. F., Jr., Lee, H. and Goodman, A. (2004) The treatment of uterine leiomyosarcoma. Results from a 10-year experience (1990-1999) at the Massachusetts General Hospital. Gynecol. Oncol. 92, 648-652.   DOI
25 Dote, H., Cerna, D., Burgan, W. E., Carter, D. J., Cerra, M. A., Hollingshead, M. G., Camphausen, K. and Tofilon, P. J. (2005) Enhancement of in vitro and in vivo tumor cell radiosensitivity by the DNA methylation inhibitor zebularine. Clin. Cancer Res. 11, 4571-4579.   DOI
26 Griffiths, E. A., Choy, G., Redkar, S., Taverna, P., Azab, M. and Karpf, A. R. (2013) SGI-110: DNA methyltransferase inhibitor oncolytic. Drugs Future 38, 535-543.   DOI
27 Levine, B. (2007) Autophagy and cancer. Nature 446, 745-747.   DOI
28 Li, B., Takeda, T., Tsuiji, K., Wong, T. F., Tadakawa, M., Kondo, A., Nagase, S. and Yaegashi, N. (2013) Curcumin induces cross-regulation between autophagy and apoptosis in uterine leiomyosarcoma cells. Int. J. Gynecol. Cancer 23, 803-808.   DOI
29 Sato, T., Issa, J. P. J. and Kropf, P. (2017) DNA hypomethylating drugs in cancer therapy. Cold Spring Harb. Perspect. Med. 7, a026948.   DOI
30 Ta, H. T., Dass, C. R., Choong, P. F. M. and Dunstan, D. E. (2009) Osteosarcoma treatment: state of the art. Cancer Metastasis Rev. 28, 247-263.   DOI
31 Schuebel, K. E., Chen, W., Cope, L., Glockner, S. C., Suzuki, H., Yi, J. M., Chan, T. A., Neste, L. V., Criekinge, W. V., Bosch, S. V., van Engeland, M., Ting, A. H., Jair, K., Yu, W., Toyota, M., Imai, K., Ahuja, N., Herman, J. G. and Baylin, S. B. (2007) Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet. 3, 1709-1723.
32 De Schutter, H., Kimpe, M., Isebaert, S. and Nuyts, S. (2009) A systematic assessment of radiation dose enhancement by 5-Aza-2'- deoxycytidine and histone deacetylase inhibitors in head-and-neck squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 73, 904-912.   DOI
33 Toro, J. R., Travis, L. B., Wu, H. J., Zhu, K., Fletcher, C. D. M. and Devesa, S. S. (2006) Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978-2001: an analysis of 26,758 cases. Int. J. Cancer 119, 2922-2930.   DOI
34 Trans-Atlantic Retroperitoneal Sarcoma Working Group (2018) Management of metastatic retroperitoneal sarcoma: a consensus approach from the Trans-Atlantic Retroperitoneal Sarcoma Working Group (TARPSWG). Ann. Oncol. 29, 857-871.   DOI
35 van Groeningen, C. J., Leyva, A., Brien, A. M. P., Gall, H. E. and Pinedo, H. M. (1986) Phase I and pharmacokinetic study of 5-aza-2'-deoxycytidine (NSC 127716) in cancer patients. Cancer Res. 46, 4831-4836.
36 Wang, L., Zhang, Y., Li, R., Chen, Y., Pan, X., Li, G., Dai, F. and Yang, J. (2012) 5-Aza-2'-deoxycytidine enhances the radiosensitivity of breast cancer cells. Cancer Biother. Radiopharm. 28, 34-44.   DOI
37 Gage, M. M., Nagarajan, N., Ruck, J. M., Canner, J. K., Khan, S., Giuliano, K., Gani, F., Wolfgang, C., Johnston, F. M. and Ahuja, N. (2019) Sarcomas in the United States: recent trends and a call for improved staging. Oncotarget 10, 2462-2474.   DOI
38 Kim, H., Kim, J., Chie, E., Park, D., Kim, I. and Kim, I. (2012) DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity. Radiat. Oncol. 7, 39.   DOI
39 Faustino-Rocha, A., Oliveira, P. A., Pinho-Oliveira, J., TeixeiraGuedes, C., Soares-Maia, R., da Costa, R. G., Colaco, B., Pires, M. J., Colaco, J., Ferreira, R. and Ginja, M. (2013) Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab. Anim. (N.Y.) 42, 217-224.   DOI
40 Yoo, C. B. and Jones, P. A. (2006) Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 5, 37-50.   DOI
41 Flotho, C., Claus, R., Batz, C., Schneider, M., Sandrock, I., Ihde, S., Plass, C., Niemeyer, C. M. and Lubbert, M. (2009) The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 23, 1019-1028.   DOI