DOI QR코드

DOI QR Code

Finite Element Analysis for the Optimal Shape of the High Voltage Insulator for Power Transmission Lines

송전선로용 고전압 절연체의 최적 형상에 대한 유한요소 해석

  • Kim, Taeyong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Sanyal, Simpy (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Rabelo, Matheus (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 김태용 (성균관대학교 전자전기컴퓨터공학과) ;
  • 산얄 심피 (성균관대학교 전자전기컴퓨터공학과) ;
  • 라벨로 마데우스 (성균관대학교 태양광협동시스템협동과정) ;
  • 이준신 (성균관대학교 전자전기컴퓨터공학과)
  • Received : 2021.10.11
  • Accepted : 2021.10.18
  • Published : 2022.01.01

Abstract

The insulator used for the transmission line is a device that is bonded with a cap, pin, ceramic, and cement to withstand insulation capacity and mechanical load. The insulator design can help to reduce the dispersion of the electric field; thus, the optimization of today's design, especially as demanded power grows, is critical. The designs of four manufacturers were used to perform a comparative analysis. Under dry circumstances of the new product, an electric field distribution study was done with no pollutants attached. Manufacturer D's design has the best voltage uniformity of 24.33% and the arc length of 500 mm or more. Manufacturer C's design has an equalizing voltage of more than 2% higher than that of other manufacturers. The importance of the design of the insulator and the number of connections according to the installation conditions is very efficient for transmission lines that will increase in the future.

Keywords

References

  1. T. Kim, S. Jeon, Y. J. Lee, J. Yi, I. H. Choi, J. A. Son, and C. W. Choi, IEEE Trans. Dielectr. Electr. Insul., 26, 115 (2019). [DOI: https://doi.org/10.1109/TDEI.2018.007553]
  2. E. A. Cherney, A. C. Baker, J. Kuffel, Z. Lodi, A. Phillips, D. G. Powell, and G. A. Stewart, IEEE Trans. Power Del., 29, 275 (2014). [DOI: https://doi.org/10.1109/TPWRD.2013.2288776]
  3. I. H. Choi, T. K. Kim, Y. B. Yoon, T. Kim, H.T.T. Nguyen, and J. Yi, Trans. Electr. Electron. Mater., 19, 188 (2018). [DOI: https://doi.org/10.1007/s42341-018-0027-7]
  4. K. Kim, B. Moon, D. Kim, K. Park, C. S. Seok, T. Kim, J. Yi, and I. H. Choi, J. Mater. Res. Technol., 9, 9777 (2020). [DOI: https://doi.org/10.1109/TPWRD.2013.2288776]
  5. A. Al-Gheilani, W. Rowe, Y. Li, and K. L. Wong, Energy Procedia, 110, 95 (2017). [DOI: https://doi.org/10.1016/j.egypro.2017.03.112]
  6. E. M. Savadkoohi, M. Mirzaie, S. M. Seyyedbarzegar, M. Mohammadi, M. Khodsuz, M. G. Pashakolae, and M. B. Ghadikolaei, Int. J. Electr. Power Energy Syst., 121, 106142 (2020). [DOI: https://doi.org/10.1016/j.ijepes.2020.106142]
  7. A. R. Verma and B. S. Reddy, IEEE Trans. Dielectr. Electr. Insul., 25, 38 (2018). [DOI: https://doi.org/10.1109/TDEI.2018.006671]
  8. M. Sarajlic, P. Kitak, and P. Pihler, IEEE Trans. Dielectr. Electr. Insul., 24, 1162 (2017). [DOI: https://doi.org/10.1109/TDEI.2017.005947]
  9. M. R. Nayak, G. Radhika, B. Devulal, P. D. Reddy, and G. Suresh, Sustainable Energy Technol. Assess., 47, 101529 (2021). [DOI: https://doi.org/10.1016/j.seta.2021.101529]
  10. Y. Liao, L. Hou, L. Wang, Z. Guan, Y. Zhang, and P. Zhu, IEEE Trans. Power Del., 26, 385 (2011). [DOI: https://doi.org/10.1109/TPWRD.2010.2068567]
  11. B. S. Reddy and A. R. Verma, Appl. Energy, 185, 1724 (2017). [DOI: https://doi.org/10.1016/j.apenergy.2016.03.078]
  12. N. S. Mehta, A. Sahu, N. Pandey, R. Pyare, and M. R. Majhi, J. Aust. Ceram. Soc., 55, 987 (2019). [DOI: https://doi.org/10.1007/s41779-019-00311-z]
  13. Z. Pu, Y. Xiong, H. Wang, B. Yan, T. Wu, L. Zheng, and P. Yin, Electr. Power Syst. Res., 173, 48 (2019). [DOI: https://doi.org/10.1016/j.epsr.2019.03.025]
  14. Y. Liu, S. Pei, W. Fu, K. Zhang, X. Ji, and Z. Yin, IEEE Trans. Dielectr. Electr. Insul., 24, 3559 (2017). [DOI: https://doi.org/10.1109/TDEI.2017.006840]
  15. H. Rosli, N. A. Othman, N.A.M. Jamail, and M. N. Ismail, Int. J. Electr. Comput. Eng., 7, 3114 (2017). [DOI: https://doi.org/10.11591/ijece.v7i6.pp3114-3123]
  16. Y. Lin, Z. Zhang, J. Liu, Y. Li, S. Pei, and Y. Liu, J. Phys.: Conf. Ser., 1314, 012043 (2019). [DOI: https://doi.org/10.1088/1742-6596/1314/1/012043]
  17. M.S.S. Nia, M. Altimania, P. Shamsi, and M. Ferdowsi, Proc. 2020 IEEE Kansas Power and Energy Conference (KPEC) (IEEE, Manhattan, USA, 2020). [DOI: https://doi.org/10.1109/kpec47870.2020.9167586]
  18. M. Taghvaei, M. Sedighizadeh, N. Nayebpashaee, and A. S. Fini, Therm. Sci. Eng. Prog., 20, 100696 (2020). [DOI: https://doi.org/10.1016/j.tsep.2020.100696]
  19. L. Lan. G. Zhang. Y. Wang, X. Wen, W. Wang, and H. Pei, IEEE Access, 7, 121395 (2019). [DOI: https://doi.org/10.1109/ACCESS.2019.2936868]
  20. J. E. Contreras and E. A. Rodriguez, Ceram. Int., 43, 8545 (2017). [DOI: https://doi.org/10.1016/j.ceramint.2017.04.105]
  21. M. Othman, M. Isa, Z.C.M. Kasa, M. N. Mazlee, and M.A.M. Piah, IOP Conf. Ser.: Mater. Sci. Eng., 767, 012023 (2020). [DOI: https://doi.org/10.1088/1757-899X/767/1/012023]
  22. M. Bouhaouche, A. Mekhaldi, and M. Teguar, IEEE Trans. Dielectr. Electr. Insul., 24, 3549 (2017). [DOI: https://doi.org/10.1109/TDEI.2017.006011]