Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.1.10

Finite Element Analysis for the Optimal Shape of the High Voltage Insulator for Power Transmission Lines  

Kim, Taeyong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Sanyal, Simpy (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Rabelo, Matheus (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University)
Yi, Junsin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.1, 2022 , pp. 66-71 More about this Journal
Abstract
The insulator used for the transmission line is a device that is bonded with a cap, pin, ceramic, and cement to withstand insulation capacity and mechanical load. The insulator design can help to reduce the dispersion of the electric field; thus, the optimization of today's design, especially as demanded power grows, is critical. The designs of four manufacturers were used to perform a comparative analysis. Under dry circumstances of the new product, an electric field distribution study was done with no pollutants attached. Manufacturer D's design has the best voltage uniformity of 24.33% and the arc length of 500 mm or more. Manufacturer C's design has an equalizing voltage of more than 2% higher than that of other manufacturers. The importance of the design of the insulator and the number of connections according to the installation conditions is very efficient for transmission lines that will increase in the future.
Keywords
Finite element analysis; High voltage insulator; Power transmission lines; Electric field distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. H. Choi, T. K. Kim, Y. B. Yoon, T. Kim, H.T.T. Nguyen, and J. Yi, Trans. Electr. Electron. Mater., 19, 188 (2018). [DOI: https://doi.org/10.1007/s42341-018-0027-7]   DOI
2 K. Kim, B. Moon, D. Kim, K. Park, C. S. Seok, T. Kim, J. Yi, and I. H. Choi, J. Mater. Res. Technol., 9, 9777 (2020). [DOI: https://doi.org/10.1109/TPWRD.2013.2288776]   DOI
3 A. Al-Gheilani, W. Rowe, Y. Li, and K. L. Wong, Energy Procedia, 110, 95 (2017). [DOI: https://doi.org/10.1016/j.egypro.2017.03.112]   DOI
4 E. M. Savadkoohi, M. Mirzaie, S. M. Seyyedbarzegar, M. Mohammadi, M. Khodsuz, M. G. Pashakolae, and M. B. Ghadikolaei, Int. J. Electr. Power Energy Syst., 121, 106142 (2020). [DOI: https://doi.org/10.1016/j.ijepes.2020.106142]   DOI
5 M. R. Nayak, G. Radhika, B. Devulal, P. D. Reddy, and G. Suresh, Sustainable Energy Technol. Assess., 47, 101529 (2021). [DOI: https://doi.org/10.1016/j.seta.2021.101529]   DOI
6 E. A. Cherney, A. C. Baker, J. Kuffel, Z. Lodi, A. Phillips, D. G. Powell, and G. A. Stewart, IEEE Trans. Power Del., 29, 275 (2014). [DOI: https://doi.org/10.1109/TPWRD.2013.2288776]   DOI
7 H. Rosli, N. A. Othman, N.A.M. Jamail, and M. N. Ismail, Int. J. Electr. Comput. Eng., 7, 3114 (2017). [DOI: https://doi.org/10.11591/ijece.v7i6.pp3114-3123]   DOI
8 M. Taghvaei, M. Sedighizadeh, N. Nayebpashaee, and A. S. Fini, Therm. Sci. Eng. Prog., 20, 100696 (2020). [DOI: https://doi.org/10.1016/j.tsep.2020.100696]   DOI
9 M. Othman, M. Isa, Z.C.M. Kasa, M. N. Mazlee, and M.A.M. Piah, IOP Conf. Ser.: Mater. Sci. Eng., 767, 012023 (2020). [DOI: https://doi.org/10.1088/1757-899X/767/1/012023]   DOI
10 N. S. Mehta, A. Sahu, N. Pandey, R. Pyare, and M. R. Majhi, J. Aust. Ceram. Soc., 55, 987 (2019). [DOI: https://doi.org/10.1007/s41779-019-00311-z]   DOI
11 T. Kim, S. Jeon, Y. J. Lee, J. Yi, I. H. Choi, J. A. Son, and C. W. Choi, IEEE Trans. Dielectr. Electr. Insul., 26, 115 (2019). [DOI: https://doi.org/10.1109/TDEI.2018.007553]   DOI
12 B. S. Reddy and A. R. Verma, Appl. Energy, 185, 1724 (2017). [DOI: https://doi.org/10.1016/j.apenergy.2016.03.078]   DOI
13 A. R. Verma and B. S. Reddy, IEEE Trans. Dielectr. Electr. Insul., 25, 38 (2018). [DOI: https://doi.org/10.1109/TDEI.2018.006671]   DOI
14 M. Sarajlic, P. Kitak, and P. Pihler, IEEE Trans. Dielectr. Electr. Insul., 24, 1162 (2017). [DOI: https://doi.org/10.1109/TDEI.2017.005947]   DOI
15 Y. Liao, L. Hou, L. Wang, Z. Guan, Y. Zhang, and P. Zhu, IEEE Trans. Power Del., 26, 385 (2011). [DOI: https://doi.org/10.1109/TPWRD.2010.2068567]   DOI
16 Z. Pu, Y. Xiong, H. Wang, B. Yan, T. Wu, L. Zheng, and P. Yin, Electr. Power Syst. Res., 173, 48 (2019). [DOI: https://doi.org/10.1016/j.epsr.2019.03.025]   DOI
17 L. Lan. G. Zhang. Y. Wang, X. Wen, W. Wang, and H. Pei, IEEE Access, 7, 121395 (2019). [DOI: https://doi.org/10.1109/ACCESS.2019.2936868]   DOI
18 Y. Liu, S. Pei, W. Fu, K. Zhang, X. Ji, and Z. Yin, IEEE Trans. Dielectr. Electr. Insul., 24, 3559 (2017). [DOI: https://doi.org/10.1109/TDEI.2017.006840]   DOI
19 Y. Lin, Z. Zhang, J. Liu, Y. Li, S. Pei, and Y. Liu, J. Phys.: Conf. Ser., 1314, 012043 (2019). [DOI: https://doi.org/10.1088/1742-6596/1314/1/012043]   DOI
20 M.S.S. Nia, M. Altimania, P. Shamsi, and M. Ferdowsi, Proc. 2020 IEEE Kansas Power and Energy Conference (KPEC) (IEEE, Manhattan, USA, 2020). [DOI: https://doi.org/10.1109/kpec47870.2020.9167586]   DOI
21 J. E. Contreras and E. A. Rodriguez, Ceram. Int., 43, 8545 (2017). [DOI: https://doi.org/10.1016/j.ceramint.2017.04.105]   DOI
22 M. Bouhaouche, A. Mekhaldi, and M. Teguar, IEEE Trans. Dielectr. Electr. Insul., 24, 3549 (2017). [DOI: https://doi.org/10.1109/TDEI.2017.006011]   DOI