Acknowledgement
The author thanks the anonymous referee of this paper for careful reading and helpful comments.
References
- L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359-364. https://doi.org/10.2307/1990065
- Z. H. Chen, S. Y. Cheng, and Q. K. Lu, On the Schwarz lemma for complete Kahler manifolds, Sci. Sinica 22 (1979), no. 11, 1238-1247.
- H. Chen and X. Nie, Schwarz lemma: the case of equality and an extension, J. Geom. Anal. 32 (2022), no. 3, Paper No. 92, 18 pp. https://doi.org/10.1007/s12220-021-00771-5
- S. Chern, On holomorphic mappings of hermitian manifolds of the same dimension, in Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966), 157-170, Amer. Math. Soc., Providence, RI, 1968.
- T. Chong, Y. Dong, Y. Ren, and W. Yu, Schwarz-type lemmas for generalized holomorphic maps between pseudo-Hermitian manifolds and Hermitian manifolds, Bull. Lond. Math. Soc. 53 (2021), no. 1, 26-41. https://doi.org/10.1112/blms.12394
- Y. Dong, Y. Ren, and W. Yu, Schwarz type lemmas for pseudo-Hermitian manifolds, J. Geom. Anal. 31 (2021), no. 3, 3161-3195. https://doi.org/10.1007/s12220-020-00389-z
- C. Ehresmann and P. Libermann, Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci. Paris 232 (1951), 1281-1283.
- P. Gauduchon, Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, suppl., 257-288.
- S. I. Goldberg and T. Ishihara, Harmonic quasiconformal mappings of Riemannian manifolds, Amer. J. Math. 98 (1976), no. 1, 225-240. https://doi.org/10.2307/2373623
- S. I. Goldberg, T. Ishihara, and N. C. Petridis, Mappings of bounded dilatation of Riemannian manifolds, J. Differential Geom. 10 (1975), no. 4, 619-630. http://projecteuclid.org/euclid.jdg/1214433165
- K.-T. Kim and H. Lee, On the Omori-Yau almost maximum principle, J. Math. Anal. Appl. 335 (2007), no. 1, 332-340. https://doi.org/10.1016/j.jmaa.2007.01.058
- K.-T. Kim and H. Lee, Schwarz's lemma from a differential geometric viewpoint, IISc Lecture Notes Series, 2, IISc Press, Bangalore, 2011.
- S. Kobayashi, Almost complex manifolds and hyperbolicity, Results Math. 40 (2001), no. 1-4, 246-256. https://doi.org/10.1007/BF03322709
- Y. Lu, Holomorphic mappings of complex manifolds, J. Differential Geom. 2 (1968), 299-312. http://projecteuclid.org/euclid.jdg/1214428442
- K. Masood, On holomorphic mappings between almost Hermitian manifolds, Proc. Amer. Math. Soc. 149 (2021), no. 2, 687-699. https://doi.org/10.1090/proc/15209
- L. Ni, Liouville theorems and a Schwarz lemma for holomorphic mappings between Kahler manifolds, Comm. Pure Appl. Math. 74 (2021), no. 5, 1100-1126. https://doi.org/10.1002/cpa.21987
- A. Ratto, M. Rigoli, and L. Veron, Conformal immersions of complete Riemannian manifolds and extensions of the Schwarz lemma, Duke Math. J. 74 (1994), no. 1, 223-236. https://doi.org/10.1215/S0012-7094-94-07411-5
- Y. Ren and K. Tang, General Schwarz lemmas between pseudo-Hermitian manifolds and Hermitian manifolds, J. Appl. Anal. Comput. 11 (2021), no. 3, 1640-1651. https://doi.org/10.11948/20200387
- H. L. Royden, The Ahlfors-Schwarz lemma in several complex variables, Comment. Math. Helv. 55 (1980), no. 4, 547-558. https://doi.org/10.1007/BF02566705
- H. L. Royden, Comparison theorems for the matrix Riccati equation, Comm. Pure Appl. Math. 41 (1988), no. 5, 739-746. https://doi.org/10.1002/cpa.3160410512
- C. L. Shen, A generalization of the Schwarz-Ahlfors lemma to the theory of harmonic maps, J. Reine Angew. Math. 348 (1984), 23-33. https://doi.org/10.1515/crll.1984.348.23
- V. Tosatti, A general Schwarz lemma for almost-Hermitian manifolds, Comm. Anal. Geom. 15 (2007), no. 5, 1063-1086. https://dx.doi.org/10.4310/CAG.2007.v15.n5.a6
- V. Tosatti, B. Weinkove, and S.-T. Yau, Taming symplectic forms and the Calabi-Yau equation, Proc. Lond. Math. Soc. (3) 97 (2008), no. 2, 401-424. https://doi.org/10.1112/plms/pdn008
- X. Yang, RC-positivity and the generalized energy density I: Rigidity, e-prints, Oct 2018, arXiv:1810.03276.
- H. C. Yang and Z. H. Chen, On the Schwarz lemma for complete Hermitian manifolds, in Several complex variables (Hangzhou, 1981), 99-116, Birkhauser Boston, Boston, MA, 1984.
- S. T. Yau, Remarks on conformal transformations, J. Differential Geom. 8 (1973), 369-381. http://projecteuclid.org/euclid.jdg/1214431798
- S. T. Yau, A general Schwarz lemma for Kahler manifolds, Amer. J. Math. 100 (1978), no. 1, 197-203. https://doi.org/10.2307/2373880
- C. Yu, Hessian comparison and spectrum lower bound of almost Hermitian manifolds, Chinese Ann. Math. Ser. B 39 (2018), no. 4, 755-772. https://doi.org/10.1007/s11401-018-0094-4