DOI QR코드

DOI QR Code

CFD simulation of cleaning nanometer-sized particulate contaminants using high-speed injection of micron droplets

초고속 미세 액적 충돌을 이용한 나노미터 크기 입자상 오염물질의 세정에 대한 CFD 시뮬레이션

  • Jinhyo, Park (School of Mechanical Engineering, Pusan National University) ;
  • Jeonggeon, Kim (School of Mechanical Engineering, Pusan National University) ;
  • Seungwook, Lee (School of Mechanical Engineering, Pusan National University) ;
  • Donggeun, Lee (School of Mechanical Engineering, Pusan National University)
  • 박진효 (부산대학교 기계공학부) ;
  • 김정건 (부산대학교 기계공학부) ;
  • 이승욱 (부산대학교 기계공학부) ;
  • 이동근 (부산대학교 기계공학부)
  • Received : 2022.09.14
  • Accepted : 2022.11.05
  • Published : 2022.12.31

Abstract

The line width of circuits in semiconductor devices continues to decrease down to a few nanometers. Since nanoparticles attached to the patterned wafer surface may cause malfunction of the devices, it is crucial to remove the contaminant nanoparticles. Physical cleaning that utilizes momentum of liquid for detaching solid nanoparticles has recently been tested in place of the conventional chemical method. Dropwise impaction has been employed to increase the removal efficiency with expectation of more efficient momentum exchange. To date, most of relevant studies have been focused on drop spreading behavior on a horizontal surface in terms of maximum spreading diameters and average spreading velocity of drop. More important is the local liquid velocity at the position of nanoparticle, very near the surface, rather than the vertical average value. In addition, there are very scarce existing studies dealing with microdroplet impaction that may be desirable for minimizing pattern demage of the wafer. In this study, we investigated the local velocity distribution in spreading liquid film under various impaction conditions through the CFD simulation. Combining the numerical results with the particle removal model, we estimated an effective cleaning diameter (ECD), which is a measure of the particle removal capacity of a single drop, and presented the predicted ECD data as a function of droplet's velocity and diameter particularly when the droplets are microns in diameter.

Keywords

Acknowledgement

이 연구는 이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Burdick, G. M., Berman, N. S., and Beaudoin, S. P. (2005). Hydrodynamic particle removal from surfaces, Thin Solid Films, 488(1-2), 116-123. https://doi.org/10.1016/j.tsf.2005.04.112
  2. Chequer, L., Carageorgos, T., Naby, M., Hussaini, M., Lee, W., and Bedrikovetsky, P. (2021). Colloidal detachment from solid surfaces: Phase diagrams to determine the detachment regime, Chemical Engineering Science, 229, 116146.
  3. Cho, Y., Choi, H., Mo, S., and Kim, T. (2020). Removal of nano-sized surface particles by CO2 gas cluster collisions for dry cleaning, Microelectronic Engineering, 234, 111438.
  4. Derjaguin, B. V., Muller, V. M., and Toporov, Y. P. (1975). Effect of contact deformations on the adhesion of particles, Journal of Colloid and interface science, 53(2), 314-326. https://doi.org/10.1016/0021-9797(75)90018-1
  5. Erkan, N., and Okamoto, K. (2014). Full-field spreading velocity measurement inside droplets impinging on a dry solid surface, Experiments in fluids, 55(11), 1-9.
  6. Fan, F. G., Soltani, M., Ahmadi, G., and Hart, S. C. (1997). Flow-induced resuspension of rigid-link fibers from surfaces, Aerosol Science and Technology, 27(2), 97-115. https://doi.org/10.1080/02786829708965460
  7. Frommhold, P. E., Mettin, R., and Ohl, C. D. (2015). Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted solid substrates, Experiments in Fluids, 56(4), 1-17. https://doi.org/10.1007/s00348-014-1876-4
  8. Haller, K. K., Ventikos, Y., Poulikakos, D., and Monkewitz, P. (2002). Computational study of high-speed liquid droplet impact, Journal of applied physics, 92(5), 2821-2828. https://doi.org/10.1063/1.1495533
  9. Henry, C., and Minier, J. P. (2014). Progress in particle resuspension from rough surfaces by turbulent flows, Progress in Energy and Combustion Science, 45, 1-53. https://doi.org/10.1016/j.pecs.2014.06.001
  10. Hinds, W. C. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd Ed., New York, John Wiley & Sons, Inc.
  11. Hong, S., Kim, J., Won, J., Qureshi, N., Chae, S., Wada, Y., Hiyama, H., Hamada, S., and Kim, T. (2019). A water polishing process to improve ceria abrasive removal, ECS Journal of Solid State Science and Technology, 8(8), 430.
  12. Johnson, K. L., Kendall, K., and Roberts, A. (1971). Surface energy and the contact of elastic solids, Proceedings of the royal society of London. A. mathematical and physical sciences, 324(1558), 301-313. https://doi.org/10.1098/rspa.1971.0141
  13. Jung, S., and Hutchings, I. M. (2012). The impact and spreading of a small liquid drop on a non-porous substrate over an extended time scale, Soft Matter, 8(9), 2686-2696.
  14. Kern, W. (1990). The evolution of silicon wafer cleaning technology, Journal of the Electrochemical Society, 137(6), 1887.
  15. Kondo, T., and Ando, K. (2019). Simulation of high-speed droplet impact against a dry/wet rigid wall for understanding the mechanism of liquid jet cleaning, Physics of Fluids, 31(1), 013303.
  16. Okorn-Schmidt, H. F., Holsteyns, F., Lippert, A., Mui, D., Kawaguchi, M., Lechner, C., Frommhold, P. E., Nowak. T., Reuter. F., Pique. M. B., Cairos. C., and Mettin, R. (2013). Particle cleaning technologies to meet advanced semiconductor device process requirements, ECS Journal of Solid State Science and Technology, 3(1), N3069.
  17. Pasandideh Fard, M., Qiao, Y. M., Chandra, S., and ? Mostaghimi, J. (1996). Capillary effects during droplet impact on a solid surface, Physics of fluids, 8(3), 650-659. https://doi.org/10.1063/1.868850
  18. Regulagadda, K., Bakshi, S., and Das, S. K. (2017). Morphology of drop impact on a super-hydrophobic surface with macro-structures, Physics of fluids, 29(8), 082104.
  19. Tan, H. (2017). Numerical study on splashing of high-speed microdroplet impact on dry microstructured surfaces, Computers & Fluids, 154, 142-166. https://doi.org/10.1016/j.compfluid.2017.05.014
  20. Thoroddsen, S. T., Thoraval, M. J., Takehara, K., and Etoh, T. G. (2011). Droplet splashing by a slingshot mechanism, Physical review letters, 106(3), 034501.
  21. van Dam, D. B., and Le Clerc, C. (2004). Experimental study of the impact of an ink-jet printed droplet on a solid substrate, Physics of Fluids, 16(9), 3403-3414. https://doi.org/10.1063/1.1773551
  22. Visser, C. W., Frommhold, P. E., Wildeman, S., Mettin, R., Lohse, D., and Sun, C. (2015). Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns, Soft matter, 11(9), 1708-1722. https://doi.org/10.1039/c4sm02474e
  23. Wang, X. D., Lee, D. J., Peng, X. F., and Lai, J. Y. (2007). Spreading dynamics and dynamic contact angle of non-Newtonian fluids. Langmuir, 23(15), 8042-8047. https://doi.org/10.1021/la0701125
  24. Yonemoto, Y., and Kunugi, T. (2017). Analytical consideration of liquid droplet impingement on solid surfaces, Scientific reports, 7(1), 1-11. https://doi.org/10.1038/s41598-016-0028-x
  25. Zoeteweij, M. L., Van der Donck, J. C. J., and Versluis, R. (2009). Particle removal in linear shear flow: model prediction and experimental validation, Journal of adhesion science and technology, 23(6), 899-911. https://doi.org/10.1163/156856109X411247