DOI QR코드

DOI QR Code

Mobile Platform Design for Smart Construction Under Unstructured Environments

비정형 환경에서 스마트 건설을 위한 이동 플랫폼 구현

  • Received : 2022.10.20
  • Accepted : 2022.12.17
  • Published : 2022.12.31

Abstract

A mobile platform that can robustly operate in unstructured environments such as construction sites is an essential problem for smart construction technology development. In this paper, we introduce a mobile robot platform that can be applied to the unstructured environment to support the collection of geographical information at construction sites. The proposed mobile platform is designed to cope with not only vertical slopes but also side slopes, and the performance of overcoming the step difference of the proposed platform was analyzed through simulation experiments.

비정형 환경인 건설 현장에서 안정적으로 운영할 수 있는 이동 플랫폼은 스마트 건설기술 개발에 있어 중요한 문제이다. 본 논문에서는 건설 현장 지형정보 수집 지원을 위해 비정형 환경에서도 강인하게 주행할 수 있는 이동 로봇 플랫폼을 소개한다. 제안한 이동 플랫폼은 종경사 뿐만이 아닌 횡경사에도 대처할 수 있도록 설계하였으며 시뮬레이션 실험을 통해 제안한 플랫폼의 단차 극복성능을 분석하였다.

Keywords

Acknowledgement

이 연구는 국토교통부/국토교통과학기술진흥원이 시행하고 한국도로공사가 총괄하는 "스마트건설기술개발 국가R&D사업 (과제번호 22SMIP-A158708-03)"의 지원으로 수행하였습니다.

References

  1. M. S. Ganeshmurthy and G. R. Suresh, "Path planning algorithm for autonomous mobile robot in dynamic environment," In 2015 3rd International Conference on Signal Processing, Communication and Networking, Chennai, India, 2015, pp. 1-6.
  2. M. A. K. Jaradat, M. Al-Rousan, and L. Quadan, " Reinforcement based mobile robot navigation in dynamic environment," Robotics and Computer-Integrated Manufacturing, vol. 27, no. 1, 2011, pp. 135-149. https://doi.org/10.1016/j.rcim.2010.06.019
  3. M. G. Mohanan and A. Salgoankar, "A survey of robotic motion planning in dynamic environments," Robotics and Autonomous Systems, vol. 100, pp, 171-185, 2018. https://doi.org/10.1016/j.robot.2017.10.011
  4. J.-Y. Moon., J.-H. Moon., and S.-H. Bea., "Control for Manipulator of an Underwater Robot Using Meta Reinforcement Learning," J. of the Korea Institute of Electronics Communications Sciences, vol. 16, no. 1, pp. 2021, 95-100.
  5. T. S. Kim, C. H. Kim, and M. K. Lee, "Study on the design and the control of an underwater construction robot for port construction," Journal of Navigation and Port Research, vol. 39, no. 3, 2015, pp. 253-260. https://doi.org/10.5394/KINPR.2015.39.3.253
  6. M. Pan, T. Linner, W. Pan, H. Cheng, and T. Bock, "Structuring the context for construction robot development through integrated scenario approach. Automation in construction," Automation in construction, vol. 114, 2020, pp. 103174.
  7. L. Bruzzone and G. Quaglia, "Locomotion systems for ground mobile robots in unstructured environments," Mechanical sciences, vol. 3, no. 2, pp. 49-62, 2012. https://doi.org/10.5194/ms-3-49-2012
  8. C. Wang, L. Meng, S. She, I. M. Mitchell, T. Li, F. Tung, and C. W. de Silva, "Autonomous mobile robot navigation in uneven and unstructured indoor environments," In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, Canada, 2017, pp. 109-116.
  9. J. Pinskier and D. Howard, "From bioinspiration to computer generation: Developments in autonomous soft robot design," Advanced Intelligent Systems, vol. 4, no. 1, 2022, pp. 2100086.
  10. S.-W. No, K.-Y. Ko, and T.-G. Kim, "Implementing Autonomous Navigation of a Mobile Robot Integrating Localization, Obstacle Avoidance and Path Planning," J. of the Korea Institute of Electronics Communications Sciences, vol. 6, no. 1, 2011, pp. 148-156.