DOI QR코드

DOI QR Code

Evaluating of the Effectiveness of RTK Surveying Performance Based on Low-cost Multi-Channel GNSS Positioning Modules

다채널 저가 GNSS 측위 모듈기반 RTK 측량의 효용성 평가

  • Kim, Chi-Hun (Department of Urban Convergence Engineering, Incheon National University) ;
  • Oh, Seong-Jong (Department of Urban Convergence Engineering, Incheon National University) ;
  • Lee, Yong-Chang (Department of Urban Engineering, Incheon National University)
  • 김치훈 (인천대학교 도시융.복합학과) ;
  • 오성종 (인천대학교 도시융.복합학과) ;
  • 이용창 (인천대학교 도시공학과)
  • Received : 2022.10.07
  • Accepted : 2022.11.22
  • Published : 2022.12.10

Abstract

According to the advancement of the GNSS satellite positioning system, the module of hardware and operation software reflecting accuracy and economical efficiency is implemented in the user sector including the multi-channel GNSS receiver, the multi-frequency external antenna and the mobile app (App) base public positioning analysis software etc., and the multichannel GNSS RTK positioning of the active configuration method (DIY, Do it yourself) is possible according to the purpose of user. Especially, as the infrastructure of multi-GNSS satellite is expanded and the potential of expansion of utilization according to various modules is highlighted, interest in the utilization of multi-channel low-cost GNSS receiver module is gradually increasing. The purpose of this study is to review the multi-channel low-cost GNSS receivers that are appearing in the mass market in various forms and to analyze the utilization plan of the "address information facility investigation project" of the Ministry of Public Administration and Security by constructing the multi-channel low-cost GNSS positioning module based RTK survey system (hereinafter referred to as "multi-channel GNSS RTK module positioning system"). For this purpose, we constructed a low-cost "multi-channel GNSS RTK module positioning system" by combining related modules such as U-blox's F9P chipset, antenna, Ntrip transmission of GNSS observation data and RTK positioning analysis app through smartphone. Kinematic positioning was performed for circular trajectories, and static positioning was performed for address information facilities. The results of comparative analysis with the Static positioning performance of the geodetic receivers were obtained with 5 fixed points in the experimental site, and the good static surveying performance was obtained with the standard deviation of average ±1.2cm. In addition, the results of the test point for the outline of the circular structure in the orthogonal image composed of the drone image analysis and the Kinematic positioning trajectory of the low cost RTK GNSS receiver showed that the trajectory was very close to the standard deviation of average ±2.5cm. Especially, as a result of applying it to address information facilities, it was possible to verify the utility of spatial information construction at low cost compared to expensive commercial geodetic receivers, so it is expected that various utilization of "multi-channel GNSS RTK module positioning system"

GNSS 위성측위시스템의 고도화에 따라 다채널 GNSS 수신기, 다 주파 외장안테나 및 모바일 앱(App)기반 공개형 측위해석 소프트웨어 등 사용자 부문에서도 정확성과 경제성을 반영한 하드웨어 및 운용 소프웨어의 모듈(Module)화가 구현되어 사용자의 목적에 따라 능동적 구성방식(DIY, Do it yourself)의 다채널 GNSS RTK 측위가 가능하다. 특히, Multi-GNSS 위성의 활용 인프라가 확대되고 다양한 모듈의 조합에 따른 활용·확대의 잠재성이 부각되면서 다채널 저가 GNSS 수신기 모듈의 활용에 대한 관심이 점차 높아지고 있다. 본 연구의 목적은 다양한 형태로 대중시장에 등장하고 있는 다채널 저가 GNSS 수신기를 검토하고 다채널 저가 GNSS 측위 모듈 기반 RTK 측량 시스템(이하, "다채널 GNSS RTK 모듈 측위 시스템")을 구성하여 행정안전부의 "주소정보시설 조사사업"의 활용 방안을 분석하고 활용 가능성을 평가하였다. 이를 위해 U-blox사의 F9P 칩셋, 안테나, GNSS 관측자료의 Ntrip 전송 및 RTK 측위용 해석 앱(App) 등 관련 모듈을 스마트폰을 매개로 조합, 저가형 "다채널 GNSS RTK 모듈 측위 시스템"을 구성하고 원형 궤적에 대한 동적측위 실시 및 주소정보시설을 대상으로 정적측위를 수행하였다. 실험대상지 내 고정점 5점을 대상으로 측지용 수신기 정적측량성과와 비교분석한 결과 평균 ± 1.2cm의 표준편차로 양호한 정적측량성과를 획득할 수 있었다. 또한, 드론영상 해석으로 구성한 정사영상 내 원형구조물의 외곽선에 대한 검사점과 저비용 RTK GNSS 수신기의 동적측량 궤적과 비교한 결과, 평균 ± 2.5cm의 표준편차로 매우 근접한 궤적 성과를 확인할 수 있었다. 특히, 주소정보시설에 적용한 결과, 고가의 상업용 측지형 수신기 대비 저렴한 비용으로 공간정보구축의 효용성을 검증할 수 있었으므로 지적분야에서 본 연구에서 구성한 "다채널 GNSS RTK 모듈 측위 시스템"의 다양한 활용성이 기대된다.

Keywords

References

  1. Lee YC, Oh SJ. 2020. Availability Assessment of Single Frequency Multi-GNSS Real Time Positioning with the RTCM-State Space Representation Parameters. Journal of Cadastre & Land InformatiX. 50(1): 107-123. https://doi.org/10.22640/LXSIRI.2020.50.1.107
  2. Kang JO, Lee YC. 2020. UAV and LiDAR SLAM Combination Effectiveness Review for Indoor and Outdoor Reverse Engineering of MultiStory Building. Journal of Cadastre & Land InformatiX. 50(2): 69-79. https://doi.org/10.22640/LXSIRI.2020.50.2.69
  3. Ha JH, Park KD, Kim HI. 2021. Avaliable analysis of precise positioning using the LX-PPS GNSS permanent stations. Journal of Cadastre & Land InformatiX. 51(1): 23-38. https://doi.org/10.22640/LXSIRI.2021.51.1.23
  4. Shin CS, Choi YS, Park MJ. 2017. Application Method of Site Calibration Function of Network RTK Survey for Local Coordinate System Result Analysis. Journal of Cadastre & Land InformatiX. 47(1): 95-110. https://doi.org/10.22640/LXSIRI.2017.47.1.95
  5. No SJ, Han JH, Kwon JH. 2012. Accuracy Analysis of Network-RTK(VRS) for Real Time Kinematic Positioning. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 30(4): 389-396. https://doi.org/10.7848/KSGPC.2012.30.4.389
  6. Park JS, Han JH, Kwon JH, Shin HS. 2014. Accuracy Analysis of FKP for Public Surveying and Cadastral Resurvey. Journal of the Korean spatial information society 22(3): 23-34.
  7. Kim CH , Kim TH, Lee YC. 2021. Review of the Effectiveness of Low-cost Receivers Utilizing Multi-GNSS Satellite Platforms and Multi-Channel Signals. Korea Spatial Information Society Conference Spring 2022. pp. 121-122.
  8. 국토지리정보원. 2003, 가상기준점(VRS) 도입에 관한 연구 2003.
  9. 국가법령정보센터. 2022. [Internet]. [www.law.go.kr]도로명주소법, 도로명주소법시행령, 도로명주소법시행규칙, 주소정보시설규칙. Last accessed 6 September 2022
  10. 한국도로교통시설물공업협동조합. 2014, RTSFA 단체표준(SPS-RTSFA-001-2064:2014)
  11. Martin A. Fischler & Robert C. Bolles. 1981. "Random Sample Consensus: A paradigm for modelfitting with applications to image analysis and automated cartography" (PDF). Comm. ACM. 24(6):381-395. doi:10.1145/358669.358692
  12. Hardin, P. J., F. Lulla, R. R. Jnsen, and J. R. Jensen. 2019. Small Unmanned Aerial Systems(Suas) for Environmental Remote Sensing: Challenges and Opportunities Revisited. GIScience & Remote Sensing 56 (2): 309-322. https://doi.org/10.1080/15481603.2018.1510088
  13. Herbert L. Ulrich V. Xiaoming C. 2003. Virtual Reference Stations Versus Broadcast Solutions in Network RTK-Advantages and Limitations, Paper Submitted to GNSS April 2003. pp. 1-15
  14. Hodgson, M.E., 2020. On the Accuracy of Low-cost Dual-Frequency GNSS Network Receivers and Reference data. GIScience & Remote Sensing 57(7): 907-923. https://doi.org/10.1080/15481603.2020.1822588
  15. Williams, RD, Lamy ML. , Maniatis G, Stott E. 2020. Three dimensional Reconstruction of Fluvial Surface Sedimentology and Topography Using Personal Mobile Laser Scanning. Earth Surface Processes and Landforms 45: 251- 261. https://doi.org/10.1002/esp.4747
  16. Arduisimple. 2022. [Internet]. [www.arduisimple.com] Last accessed 1 September 2022
  17. GEO Systems. 2022. [Internet]. [geosys.co.kr] Last accessed 30 September 2022
  18. GSA GNSS Market Report. 2019. [Internet]. [euspa.europa.eu/gsa-gnss-market-report] Last accessed 6 October 2022