• 제목/요약/키워드: Static Positioning

Search Result 143, Processing Time 0.037 seconds

Effects of ionospheric disturbances caused by solar storm on rapid-static positioning accuracy (태양폭풍에 의한 전리층 교란이 신속정지측위 정확도에 미치는 영향)

  • Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.651-657
    • /
    • 2011
  • There exists a high correlation between the ionospheric delays and the integer ambiguity in GPS observation equation, so that the sufficient time span is required to revolve the integer ambiguity. This means that the ambiguity resolution plays a key role especially in rapid-static positioning mode. To analyze the effect of ionospheric disturbances on the positioning accuracy, 02/19/2011 day of dataset was selected processed in rapid-static positioning mode. The total of 141 30-minute sessions were processed, i.e., the estimation procedure started every 10 minutes, and the time-to-fix information of each data interval is obtained. In this study, the analysis is performed by comparing the time-to-fix with the magnitudes of ionospheric delays. The computed correlation coefficient between the time-to-fix and the magnitudes of ionospheric delays is 0.31, which indicates the ionospheric disturbances affect the positioning accuracy in rapid-static positioning mode. Therefore, it is required to collect and process sufficient data when the GPS surveying is performed in unfavorable ionospheric conditions.

A Simulation Study on Positioning Methods of Idle Vehicles in AGVS (무인운반차 시스템에서의 유휴차량 대기위치 결정방법에 대한 시뮬레이션 연구)

  • Kim, Jae-Yeon;Kim, Kap-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.4
    • /
    • pp.421-436
    • /
    • 1999
  • It is discussed how to locate idle vehicles of AGVS considering dynamically changing situation. Several positioning methods are suggested including static positioning, dynamic positioning with time-independent pickup probabilities, dynamic positioning with time-dependent pickup probabilities, and dynamic positioning with a look-ahead capability. These positioning strategies are compared with each other by a simulation experiment.

  • PDF

SYSTEM ARCHITECTURE OF THE TELEMATICS POSITIONING TESTBED

  • Kim, Young-Min;Kim, Bong-Soo;Choi, Wan-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.349-352
    • /
    • 2005
  • The telematics positioning testbed is an infrastructure to test and verify positioning technology, the sub-component of telernatics system. The positioning testbed provides the environment of performance analysis for acquisition of static and dynamic positioning information using telematics vehicle. This testbed consists of onboard positioning system, positioning reference station and lab positioning server. The onboard positioning system equipped in telematics vehicle, consists of target positioning system, reference positioning system, and analysis tool. A equipment acquiring high precision positioning data obtained from GPS combined with IMU was set as a reference positioning system. Analysis tool compares observed positioning data with high precision positioning information from a reference positioning system, and processes positioning information. Positioning reference station is RTK system used for reducing atmosphere error, and it transmits corrected information to reference positioning system. Positioning server which is located at laboratory manages positioning database and provides monitoring data to integrated testbed operating system. It is expected that the testbed supports commercialization of telernatics technology and services, integrated testing among component technology and verification.

  • PDF

Performance Evaluation of the Low-cost, High-precision RTK Device RTAP2U for GPS-based Precise Localization

  • Kim, Hye-In;Kim, Yeong-Guk;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • The need for precise location data is growing across numerous markets, and so is the number of affordable high-precision GPS receivers. In this paper, we validated the performance of RTAP2U, a low-cost high-precision RTK receiver that was recently released. Two positioning modes were tested: static and driving. The static test conducted Zero-Baseline Single-RTK and Network-RTK survey for 57 hours and 51 hours, respectively. For the driving test, Network-RTK survey was conducted using VRS services provided by NGII based on Trimble PIVOT and Geo++ GNSMART. The static test showed about 1 cm horizontal and vertical accuracies, which is very stable considering the test duration longer than 50 hours. The integer ambiguity FIX rate marked a solid 100%. The driving test result also reached a 100% FIX rate. Horizontal and vertical accuracies were better than 2 cm and 3 cm, respectively. Researchers can refer to this paper when considering affordable high-precision GPS receivers as an option.

Micro-positioning of a Smart Structure using an Enhanced Stick-slip Model (향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어)

  • Lee, Chul-Hee;Jang, Min-Gyu;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.230-236
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT (lead (Pb) zirconia (Zr) Titanate (Ti)) based stack actuator incorporating with the PID (Proportional-Integral-Derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

  • PDF

Micro-positioning of a Smart Structure Using an Enhanced Stick-slip Model (향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어)

  • Lee, Chul-Hee;Jang, Min-Gyu;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1134-1142
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT(lead (Pb) zirconia(Zr) Titanate(Ti)) based stack actuator incorporating with the PID(proportional-integral-derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

A Testbed of Performance Evaluation for Fingerprint Based WLAN Positioning System

  • Zhao, Wanlong;Han, Shuai;Meng, Weixiao;Zou, Deyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2583-2605
    • /
    • 2016
  • Fingerprint positioning is a main stream and key technique for seamless positioning systems. In this paper, we develop a performance evaluation testbed for fingerprint based Wireless Local Area Network (WLAN) positioning system. The testbed consists of positioning server, positioning terminal, Access Point (AP) units, positioning accuracy analysis system and testing scenarios. Different from other testbeds tended to focus on testing in same situation, in the proposed testbed, a couple of scenarios are set to test the positioning system including indoor and outdoor environments. Handset-side positioning mode and network-side positioning mode are provided simultaneously. Variety of motion models, such as static model, low-speed model and high-speed model are considered as well as different positioning algorithms. Finally, some implementation cases are analyzed to verify the credibility of the testbed.

Performance Analysis of WADGPS System for Improving Positioning Accuracy

  • So, Hyoungmin;Jang, Jaegyu;Lee, Kihoon;Park, Junpyo;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • The Wide Area Differential Global Positioning System (WADGPS) that uses a number of Global Navigation Satellite System (GNSS) reference stations are implemented with various types and provide services as it can service a wide range of areas relatively. This paper discusses a constellation design of reference stations and performance analysis of the WADGPS. It presented performance results of static and dynamic users when wide area correction algorithm was applied using eight reference stations.

Precise Static Positioning with Dual-Frequency P-code/Phase Receivers in Global Positioning System (GPS위성의 P코드/위상측정용 2주파수 수신기에 의한 정밀측위)

  • Lee, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.219-228
    • /
    • 1993
  • The development of the Global Positioning System was one of the most significant technical advancements in the surveying fields during the 1980's. In recent years, the use of GPS techniques are increased because of the improvements of receiver design and the data analysis, and the greater accuracy. In this paper, the static positioning with special linear combinations of data is reviewed and some experiences of dual-frequency P-code/phase receivers are discussed. The test results of Wild GPS System-200 show that the highest accuracies of 1ppm are obtainable on baselines of 7km/37km and the positional accuracies of 10m, which is applicable to determination of initial coordinates, are also possible on point-positioning of P-code measurements.

  • PDF

Comparison of Multi-Static Sonar Target Positioning Performance (다중상태 소나망 위치 추정 성능 비교)

  • Park, Chee-Hyun;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.166-172
    • /
    • 2007
  • In this paper, we address the target positioning performance of Multi-Static sonar with respect to target positioning method and measurement error. Based on the analysis on two candidate solution approaches, namely, Least Square (LS) using range and angular information simultaneously and Maximum Likelihood (ML) using only range information as the existing information fusion methods for possible application to Multi-Static sonar, we propose to employ ML using range and angular information. Assuming that each sensor can receive range and angular information, we conduct representative comparison experiments over the existing and proposed methods under various measurement noise scenarios. We also investigate the target positioning performance according to number of sensors, distance between transmitter and receiver. According to the experimental results, RMSE of the proposed ML with distance and direction information is found to be more superior to ML using distance alone and to LS in case distance between transmitter and receiver is longer and number of receiver is smaller.