DOI QR코드

DOI QR Code

가역 도약 마르코프 연쇄 몬테 카를로 방법을 이용한 물성 역산 기술 소개

Introduction to Subsurface Inversion Using Reversible Jump Markov-chain Monte Carlo

  • 전형구 (경북대학교 지질학과) ;
  • 조용채 (서울대학교 에너지시스템공학부)
  • Hyunggu, Jun (Department of Geology, Kyungpook National University) ;
  • Yongchae, Cho (Department of Energy Resources Engineering, Seoul National University)
  • 투고 : 2022.09.30
  • 심사 : 2022.11.23
  • 발행 : 2022.11.30

초록

지하 매질의 물성 정보는 지층 구조의 정확한 영상화를 위해 필요하며, 예측된 매질 물성 자체도 지하 매질 특성에 대한 중요한 정보를 제공해줄 수 있기 때문에 다양한 종류의 지층 물성 도출 알고리듬들이 개발되고 적용되어왔다. 그 중 마르코프 연쇄 몬테 카를로를 이용한 확률론적인 접근 방법은 기존의 결정론적인 접근 방법과는 달리 지역 최소값 문제를 완화시킬 수 있으며 역산 결과의 불확실성을 정량화할 수 있다는 부분에서 장점을 가진다. 따라서 마르코프 연쇄 몬테 카를로를 이용한 지층 물성 역산 알고리듬이 다양한 지구 물리 자료의 역산에 적용되어 왔으나 그 사례는 결정론적 접근 방법에 비해 매우 적다. 본 논문에서는 여러 형태의 마르코프 연쇄 몬테 카를로 역산 알고리듬 중 가역 도약을 적용한 가역 도약 마르코프 연쇄 몬테 카를로 역산을 탄성파 자료 역산에 적용한 다양한 사례들을 소개하고 각각의 특성을 설명한다. 또한 가역 도역 마르코프 연쇄 몬테 카를로 역산의 장단점에 대해 분석하고 향후 해당 알고리듬의 연구 방향 및 국내의 활용성에 대해 논의한다.

Subsurface velocity is critical for the accurate resolution geological structures. The estimation of acoustic impedance is also critical, as it provides key information regarding the reservoir properties. Therefore, researchers have developed various inversion approaches for the estimation of reservoir properties. The Markov chain Monte Carlo method, which is a stochastic method, has advantages over the deterministic method, as the stochastic method enables us to attenuate the local minima problem and quantify the uncertainty of inversion results. Therefore, the Markov chain Monte Carlo inversion method has been applied to various kinds of geophysical inversion problems. However, studies on the Markov chain Monte Carlo inversion are still very few compared with deterministic approaches. In this study, we reviewed various types of reversible jump Markov chain Monte Carlo applications and explained the key concept of each application. Furthermore, we discussed future applications of the stochastic method.

키워드

과제정보

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원(20226A10100030, 고성능 해양 CO2 저장 모니터링 기술개발)과 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원(2022R1I1A3066265)을 받아 수행된 연구입니다. 본 논문은 서울대 신임교수 연구정착금 지원사업(0456-20220039)의 재원을 지원 받아 수행되었습니다.

참고문헌

  1. Araya-Polo, M., Ferris, S., and Florez, M., 2019, Deep learning driven velocity model building workflow, The Leading Edge, 38(11), 872a1-872a9. https://doi.org/10.1190/tle38110872a1.1
  2. Bodin, T., and Sambridge, M., 2009, Seismic tomography with the reversible jump algorithm, Geophysical Journal International, 178(3), 1411-1436. https://doi.org/10.1111/j.1365-246X.2009.04226.x
  3. Cho, Y., Gibson Jr, R. L., and Zhu, D., 2018, Quasi 3D transdimensional Markov-chain Monte Carlo for seismic impedance inversion and uncertainty analysis, Interpretation, 6(3), T613-T624. https://doi.org/10.1190/INT-2017-0136.1
  4. Cho, Y., Jeong, D., and Jun, H., 2020, Semi-auto horizon tracking guided by strata histograms generated with transdimensional Markov-chain Monte Carlo, Geophysical Prospecting, 68(5), 1456-1475. https://doi.org/10.1111/1365-2478.12933
  5. Cho, Y., and Jun, H., 2021, Estimation and uncertainty analysis of the CO2 storage volume in the Sleipner field via 4D reversible-jump Markov-chain Monte Carlo, Journal of Petroleum Science and Engineering, 200, 108333. https://doi.org/10.1016/j.petrol.2020.108333
  6. Everett, M. E., 2013, Near-surface applied geophysics. Cambridge University Press. https://doi.org/10.1017/CBO9781139088435
  7. Geyer, C. J., and Moller, J., 1994, Simulation procedures and likelihood inference for spatial point processes, Scandinavian Journal of Statistics, 21, 359-373. https://www.jstor.org/stable/4616323
  8. Green, P. J., 1995, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711-732. https://doi.org/10.1093/biomet/82.4.711
  9. Gutierrez, M., Katsuki, D., and Almrabat, A., 2012, Effects of CO2 injection on the seismic velocity of sandstone saturated with saline water, Int. J. Geosci., 3(5), 908-917. http://dx.doi.org/10.4236/ijg.2012.325093
  10. Hastings, W. K., 1970, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57(1), 97-109. https://doi.org/10.2307/2334940
  11. Hong, T., and Sen, M. K., 2009, A new MCMC algorithm for seismic waveform inversion and corresponding uncertainty analysis, Geophysical Journal International, 177, 14-32. https://doi.org/10.1111/j.1365-246X.2008.04052.x
  12. Jun, H., Cho, Y., and Noh, J., 2019, Trans-dimensional Markov chain Monte Carlo inversion of sound speed and temperature: Application to Yellow Sea multichannel seismic data, Journal of Marine Systems, 197, 103180. http://dx.doi.org/10.1016/j.jmarsys.2019.05.006
  13. Liu, B., Yang, S., Ren, Y., Xu, X., Jiang, P., and Chen, Y., 2021, Deep-learning seismic full-waveform inversion for realistic structural models, Geophysics, 86(1), R31-R44. https://doi.org/10.1190/geo2019-0435.1
  14. Liu, Z., and Bleistein, N., 1995, Migration velocity analysis: Theory and an iterative algorithm, Geophysics, 60(1), 142-153. https://doi.org/10.1190/1.1443741
  15. Luo, X., 2010, Constraining the shape of a gravity anomalous body using reversible jump Markov chain Monte Carlo, Geophysical Journal International, 180(3), 1067-1079. https://doi.org/10.1111/j.1365-246X.2009.04479.x
  16. Ma, X. Q., 2002, Simultaneous inversion of prestack seismic data for rock properties using simulated annealing, Geophysics, 67(6), 1877-1885. https://doi.org/10.1190/1.1527087
  17. Mallick, S., 1995, Model-based inversion of amplitude-variations with offset data using a genetic algorithm, Geophysics, 60(4), 939-954. https://doi.org/10.1190/1.1443860
  18. Malinverno, A., 2002, Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem, Geophysical Journal International, 151(3), 675-688. https://doi.org/10.1046/j.1365-246X.2002.01847.x
  19. Medwin, H., 1975, Speed of sound in water: a simple equation for realistic parameters, J. Acoust. Soc. Am., 58, 1318-1319. https://doi.org/10.1121/1.380790
  20. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E., 1953, Equation of state calculations by fast computing machines, The Journal of Chemical Physics, 21(6), 1087-1092. https://doi.org/10.1063/1.1699114
  21. Misra, S., and Sacchi, M. D., 2008, Global optimization with model-space preconditioning: Application to AVO inversion, Geophysics, 73(5), R71-R82. https://doi.org/10.1190/1.2958008
  22. Pratt, R. G., Shin, C., and Hick, G. J., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophysical Journal International, 133(2), 341-362. https://doi.org/10.1046/j.1365-246X.1998.00498.x
  23. Ray, A., Kaplan, S., Washbourne, J., and Albertin, U., 2018, Low frequency full waveform seismic inversion within a tree based Bayesian framework, Geophysical Journal International, 212(1), 522-542. https://doi.org/10.1093/gji/ggx428
  24. Salamanca, A., Gutierrez, E., and Montes, L., 2017, Optimization of a seismic inversion genetic algorithm, 87th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 823-827. https://doi.org/10.1190/segam2017-17795633.1
  25. Sambridge, M., Gallagher, K., Jackson, A., and Rickwood, P., 2006, Trans-dimensional inverse problems, model comparison and the evidence, Geophysical Journal International, 167(2), 528-542. https://doi.org/10.1111/j.1365-246X.2006.03155.x
  26. Schuster, G. T., and Quintus-Bosz, A., 1993, Wavepath eikonal traveltime inversion: Theory, Geophysics, 58, 1314-1323. https://doi.org/10.1190/1.1443514
  27. Sen, M., and Stoffa, P., 1991, Nonlinear one-dimensional seismic waveform inversion using simulated annealing, Geophysics, 56, 1624-1638. https://doi.org/10.1190/1.1442973
  28. Sen, M., and Biswas, R., 2017, Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm, Geophysics, 82(3), R119-R134. https://doi.org/10.1190/geo2016-0010.1
  29. Sheng, J., Leeds, A., Buddensiek, M., and Schuster, G. T., 2006, Early arrival waveform tomography on near-surface refraction data, Geophysics, 71(4), U47-U57. https://doi.org/10.1190/1.2210969
  30. Stuart, G. K., Yang, W., Minkoff, S., and Pereira, F., 2016, A two-stage Markov chain Monte Carlo method for velocity estimation and uncertainty quantification, 86th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 3682-3687. https://doi.org/10.1190/segam2016-13865449.1
  31. Taillandier, C., Noble, M., Chauris, H., and Calandra, H., 2009, First-arrival traveltime tomography based on the adjoint-state method, Geophysics, 74(6), WCB1-WCB10. https://doi.org/10.1190/1.3250266
  32. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49(8), 1259-1266. https://doi.org/10.1190/1.1441754
  33. Wang, R., Zuo, T., and Wang, K., 2003, The yellow sea cold bottom water? An oversummering site for calanus sinicus (copepoda, crustacea), J. Plankton Res., 25, 169-183. https://doi.org/10.1093/plankt/25.2.169
  34. Xue, Y., and Sen, M. K., 2016, Stochastic seismic inversion using greedy annealed importance sampling, Journal of Geophysics and Engineering, 13(5), 786-804. https://doi.org/10.1088/1742-2132/13/5/786
  35. Yang, F., and Ma, J., 2019, Deep-learning inversion: A next generation seismic velocity model building method, Geophysics, 84(4), R583-R599. https://doi.org/10.1190/geo2018-0249.1
  36. Yang, H. W., Cho, Y. K., Seo, G. H., You, S. H., and Seo, J. W., 2014, Interannual variation of the southern limit in the yellow sea bottom cold water and its causes, J. Mar. Syst., 139, 119-127. https://doi.org/10.1016/j.jmarsys.2014.05.007
  37. Yilmaz, O., 2001, Seismic data analysis: processing, inversion and interpretation of seismic data Vol. I, Soc. Expl. Geophys., 288-323. https://library.seg.org/doi/pdf/10.1190/1.9781560801580.fm
  38. Yun, Y. H., Park, Y. H., and Bong, J. H., 1991, Enlightenment of the characteristics of the yellow sea bottom cold water and its southward extension, J. Kor. Earth Sci. Soc., 12, 25. https://koreascience.kr/article/JAKO199110102456862.page 10102456862.page
  39. Zhang, S., Wang, Q., Lu, Y., Cui, H., and Yuan, Y., 2008, Observation of the seasonal evolution of the yellow sea cold water mass in 1996-1998, Cont. Shelf Res., 28, 442-457. https://doi.org/10.1016/j.csr.2007.10.002
  40. Zhu, D., and Gibson, R., 2016, Seismic inversion and uncertainty analysis using a transdimensional Markov chain Monte Carlo method, 86th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 3666-3671. https://doi.org/10.1190/segam2016-13870581.1
  41. Zhu, D., and Gibson, R., 2018, Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method, Geophysics, 83(4), R321-R334. https://doi.org/10.1190/geo2016-0594.1