DOI QR코드

DOI QR Code

감쇠장치의 동적특성에 대한 고무의 종류, 경도 및 프리스트레스력의 영향 평가

Impact Evaluation of Rubber Type, Hardness and Induced Prestress Force on the Dynamic Properties of a Damper

  • 임채림 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 스마트시티공학부 건축공학전공) ;
  • 문주현 (경기대학교 스마트시티공학부 건축공학전공) ;
  • 원은비 (경기대학교 일반대학원 건축공학과)
  • 투고 : 2022.10.24
  • 심사 : 2022.11.23
  • 발행 : 2022.12.31

초록

이 연구의 목적은 감쇠능력이 우수한 재료로 구성된 DUS(damping-up system)의 동적특성을 평가하고 일반 행어볼트와의 성능을 비교하는데에 있다. 주요변수는 고무의 종류 및 경도(𝜂H) 그리고 프리스트레스력(고무의 응력-변형률 관계에서 압축변형률(𝜂R)로부터 환산된 값)이다. 동적특성은 고유진동수(𝜔n), 최대 응답가속도(Am), 증폭계수(𝛼p), 최대 상대변위(𝚫m) 및 감쇠비(𝜉D)로부터 평가되었다. 실험결과 DUS의 Am, 𝛼p 및 𝚫m 는 일반 행어볼트 보다 각각 46.3%, 46.6% 및 62.9% 낮았으며, 𝜉D는 3.89배 높았다. 특히 DUS의 𝛼p 는 평균 1.3으로서 KDS 41 17 00의 강성요소에서 제시하는 값과 비슷한 반면, 일반 행어볼트의 𝛼p 는 2.45로 연성요소에서 제시하는 값과 비슷하였다. 결과적으로 DUS의 최적상세는 𝜂H가 50인 NR(natural rubber)과 45인 EPDM(ethylene propylene diene monomer)을 권장하며, 이들의 𝜂R는 5%로 추천한다.

The objective of this study is to evaluate the dynamic properties of DUS (damping-up system) composed of the materials with excellent damping capacity, and to compare with those of the conventional hangar bolt. The main parameters are the type and hardness (𝜂H), of rubber and the prestress force (value converted from the compression strain (𝜂R) in the stress-strain relationship of rubber). The dynamic properties were examined from the natural frequency (𝜔n), maximum response acceleration (Am), amplification coefficient (𝛼p), maximum relative displacement (𝚫m), and damping ratio (𝜉D). The test results showed that the Am, 𝛼p, and 𝚫m values of DUS were 46.3%, 46.6% and 62.9% lower, respectively, and the 𝜉D value was 3.89 times higher, when compared to those of the conventional hangar bolt. In particular, the 𝛼p value was 1.3 for DUS, and 2.45 for the conventional hanger bolt, which were similar to those of rigid and flexible components specified in KDS 41 17 00, respectively. Consequently, in the optimal details of DUS, the 𝜂H values of 50 and 45 were required for the NR (natural rubber) and EPDM (ethylene propylene diene monomer), and the 𝜂R value of 5% was also recommended.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(과제번호RS-2021-KA164373).

참고문헌

  1. ASTM D412-16. (2021), Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension, ASTM International, USA.
  2. Choi, E. S., Choi, G. C., Kim, H. T., and Youn, H. J. (2015), Smart Damper Using the Combination of Magnetic Friction and Pre-Compressed Rubber Springs, Journal of Sound and Vibration, 351, 68-89. https://doi.org/10.1016/j.jsv.2015.04.028
  3. Friis, T., Katsanos, E. I., Saberi, M., and Koss, H. H. H. (2021), Two-Level Friction Damping and its Application for Passive Multi-Functional Vibration Control of High-Rise Buildings, Engineering Structures, 239(15), 1-27.
  4. Hidayat, B. A., Hu, H. T., Hsiao, F. P., Han, A. L., Pita, P., and Haryanto, Y. (2020), Seismic Performance of Non-Ductile Detailing RC Frames: An Experimental Investigation, Earthquakes and Structures, 19(6), 485-498. https://doi.org/10.12989/EAS.2020.19.6.485
  5. ICC-ES (2010), AC156 Acceptance Criteria for the Seismic Qualification of Nonstructural Components, International Code Council Evaluation Service, Brea, California, USA.
  6. Jun, S. C., Lee, C. H., and Bae, C. J. (2021) Analysis of Dynamic Behavior of Seismic and Non-Seismic Suspended Ceiling Systems Based on Shake-Table Testing, Journal of Korean Society of Steel Construction, 33(2), 63-74. https://doi.org/10.7781/kjoss.2021.33.2.063
  7. KDS 41 17 00. (2019), Seismic Building Design Code and Commentary (Korean Building Code), Korean Design Standard, Kyonggi-do, Korea.
  8. Kim, D. K. (2017), Structural Dynamics (4th Edition), Goomibook, Seoul, Republic of Korea.
  9. Kim, H. Y., Choi, Y. S., Sim, J. I., and Cho, C. G. (2018), Full-Scale Shaking Table Test and Analysis of Seismic Ceiling Systems, Korean Association for Spatial Structures, 18(1), 135-143. https://doi.org/10.9712/KASS.2018.18.1.135
  10. Kwon, O. S. (2009), Eqmaker-Artificial Earthquake Maker, Korea Martial Institute, Gyeonggi-do, Republic of Korea.
  11. Lee, C. M., and Goverdovskiy, V. N. (2022), Damping Control in a Spring and Suspension with Sign-Changing Stiffness, Applied Acoustics, 373(7), 1-10.
  12. Lee, J. S., Jung, D. I., Lee, D. Y., and Cho, B. H. (2021), Performance Evaluation of Rigid Braced Indirect Suspended Ceiling with Steel Panels. Applied Sciences, 11, 1-20. https://doi.org/10.3390/app11010001
  13. Oh, J., and Jung, H. Y. (2010), An Experimental Study for the Shear Property Dependency of High Damping Rubber Bearings, Journal of Civil and Environmental Engineering Research, KSCE, 30(2), 121-129.
  14. Lijesh, K. P., and Hirani, H. (2014), Stiffness and Damping Coefficients for Rubber Mounted Hybrid Bearing, Lubrication Science, 26, 301-314. https://doi.org/10.1002/ls.1252
  15. Pan, X., Zheng, Z., and Wang, Z. (2016), Amplification Factors for Design of Nonstructural Components Considering the Near-Fault Pulse-Like Ground Motions, Bulletin of Earthquake Engineering, 15(4), 1519-1541. https://doi.org/10.1007/s10518-016-0031-4
  16. Qi, L., Kurata, M., Ikeda, Y., Kunitomo, K., and Takaoka, M. (2021), Seismic Evaluation of Two-Elevation Ceiling System by Shake Table Tests, Earthquake Engineering Structural Dynamics, 50, 1147-1166. https://doi.org/10.1002/eqe.3390
  17. Sun, C. H., and Kim, I. K. (2021), Shear Characteristic Changes in Blended Rubber of Elastomeric Bearings due to Aging, Journal of the Korean Society of Hazard Mitigation, 21(6), 247-255. https://doi.org/10.9798/KOSHAM.2021.21.6.247
  18. Wu, Z. Y., Meng, N., Yuan, X., and Xiang, J. R. (2020), Anti-Seismic Suspended Ceiling with Stone Curtain Wall and Mounting Method Thereof. China Patent No. CN112324040A.
  19. Yamasato, K., Morohoshi, M., and Harayama, H. (2019), Aseismatic Ceiling Structure. Japan Patent No. JP2020165110A.
  20. Yang, K. H., Mun, J. H., and Im, C. R. (2022), Axial and Shear Behavior of Prestressed Damping Isolation Units Using a Spring and Rubbers, Buildings, 12(9), 1-19.
  21. Yu, F., Lu, A., Lu, J., Wang, Z., Zhang, Q., Geng, G., and Li, Z. (2019), Effect of Phenyl Content, Sample Thickness and Compression on Damping Performances of Silicone Rubber: A Study by Dynamic Mechanical Analysis and Impact Damping Test, Polymer Testing, 80, 1-8.