과제정보
이 논문은 경기도의 경기도협력연구센터(GRRC)사업[(GRRC TU Korea2020-B02), 이종소재 접합 제조공정 자동화를 위한 로봇 응용기술 개발]과 2022년도 정부(산업통상자원부)와 한국산업기술진흥원의 '한/체코 국제공동기술개발사업(No. P0019623)으로 수행된 연구 결과입니다.
참고문헌
- D.J.Choi, J.H.Han., "Comparison of Characteristics of Noise and Vibration Data for Diagnosis of Deep Learning Motor Fault", J. of The Korean Electrical Society. Vol. 39. pp. 46-47, 2019
- S.H.Choi, J.K.Park, B.R.Jo, "A Fundamental Study on the Fault Diagnosis Method for Integrated Drive Module of Collaborative Robot based on Artificial Neural Network", ICROS. pp.599~600, 2021
- H.Jung, J.W.Kim, "A Machine Learning Approach for Mechanical Motor Fault Diagnosis", J of Korean Society of Industrial and Systems Engineering. Vol.40. pp. 57~64, 2017 https://doi.org/10.11627/jkise.2017.40.1.057
- S.Y.Lim, U.H.Jeong, H.W.Lim, "Study on Failure Prediction Method of BLDC Motor Driver", J of Advanced Engineering and Technology. Vol.9. pp.105~109, 2016
- Y.H.Lee, K.J.Kim, S.I.Lee, "Seq2Seq model-based prognostics and Health Management of Robot Arm", KIIECT. Vol.12, 2019
- S.M.Chun, S.Y.Suk, "Development and Implementation of Smart Manufactruing Big-Data Platform Using Opensource for Failure Prognostics and Diagnosis Technology of Industrial Robot", IEMEK, Vol.14. pp.184~195, 2019
- D.S.Kim, T.G.Kim, W.S.Seo, "Development of Collaborative Robot Actuator Reliability Test System for Real Time Monitoring and Fault Detection", The Institute of Electronics and Information Engineers. pp.597~598, 2019
- D.H.Ko, W.H.Choi, S.D.Choi, " Failure Prognostics of Start Motor Based on Machine Learning", J of Korean Society of Manufacturing Process Engineers. Vol.20. pp.85~91, 2021
- J.S.Choi, "Predictive Maintenance of the Robot Trouble Using The Machine Learning Method", J of the semiconductor & display technology, Vol.19 no.1. pp.1~5, 2020
- H.J.Shin, "A Fault Diagnosis Methodology for Module P rocess of TFT-LCD Manufacture Using Support Vector Machines", J of the semiconductor & display technology, Vol.9 no.4, pp.93~97, 2010
- S.U.Park, J.H.Han, J.Y.Kim, "Study on Compatibility of Learning Model by Verification of External Motor Failure Noise and Vibration Data", KIEE. Vol.52. pp.1797~1798, 2021
- N.J.Kim, Y.C.Bae, "Status Diagnosis of Pump and Motor Applying K-Nearest Neighbors", KIECS. vol.13. pp.1249~1256, 2018
- S.I.Kim, Y.J.Noh, "Fault Classification Model Based on Time Domain Feature Extraction of Vibration Data", J of Computational Structural Engineering Institute. Vol.34. pp.25~33, 2021 https://doi.org/10.7734/COSEIK.2021.34.1.25