Browse > Article
http://dx.doi.org/10.14478/ace.2022.1099

Fabrication of Copper(II) Oxide Plated Carbon Sponge for Free-standing Resistive Type Gas Sensor and Its Application to Nitric Oxide Detection  

Kim, Seokjin (Chemical Engineering and Applied Chemistry, Chungnam National University)
Ha, Seongmin (Chemical Engineering and Applied Chemistry, Chungnam National University)
Myeong, Seongjae (Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.6, 2022 , pp. 630-635 More about this Journal
Abstract
Copper(II) oxide (CuO), electroless plated on a nitrogen-containing carbon sponge prepared by a melamine sponge thermal treatment, was developed as a nitric oxide (NO) gas sensor that operates without a wafer. The CuO content on the surface of the carbon sponge increased as the plating time increased, but the content of nitrogen known to induce NO gas adsorption decreased. The untreated carbon sponge showed a maximum resistance change (5.0%) at 18 min. On the other hand, the CuO plated sample (CuO30s-CS) showed a maximum resistance change of 18.3% in 8 min. It is considered that the improvement of the NO gas sensing capability was caused by the increase in hole carriers of the carbon sponge and improved movement of electrons due to CuO. However, the NO gas detection resistance of the CuO electroless plated carbon sponge for 60 s decreased to 1.9%. It is considered that the surface of the carbon sponge was completely plated with CuO, resulting in a decrease in the NO gas adsorption capacity and resistance change. Thus, CuO-plated carbon sponge can be used as an effective NO gas sensor because it has fast and excellent resistance change properties, but CuO should not be completely plated on the surface of the carbon sponge.
Keywords
Copper(II) oxide; Nitric oxide; Sensor; Electroless plate; Carbon sponge;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.-W. Jeong, K. H. Kim, B. S. Kim, and Y. T. Byun, Characteristics of highly sensitive and selective nitric oxide gas sensors using defect-functionalized single-walled carbon nanotubes at room temperature, Appl. Surf. Sci., 550, 149250 (2021).   DOI
2 F. Su, C. Lu, W. Cnen, H. Bai, and J. F. Hwang, Capture of CO2 from flue gas via multiwalled carbon nanotubes, Sci. Total Environ., 407, 3017-3023 (2009).   DOI
3 R. Lee, C. Lim, M.-J. Kim, and Y.-S. Lee, Acetic acid gas adsorption characteristics of activated carbon fiber by plasma and direct gas fluorination, Appl. Chem. Eng., 32, 55-60 (2021).   DOI
4 D. W. Kim, L. K. Kwac, H. G. Kim, and S. K. Ryu, Measuring electrical resistances of ACF sensors by CO2 adsorption in a small chamber, Carbon Lett., 32, 295-304 (2022).   DOI
5 M.-J. Kim, S. Lee, K. M. Lee, H. Jo, S. S. Choi, and Y.-S. Lee, Effect of CuO introduced on activated carbon fibers formed by electroless plating on the NO gas sensing, J. Ind. Eng. Chem., 60, 341-347 (2018).   DOI
6 E. S. Yoon, J. H. Yoon, S. G. Son, S. J. Kim, B. G. Choi, Development of a portable and disposable pH sensor based on titanium wire with high electrochemical sensing performance, Appl. Chem. Eng., 32, 700-705 (2021).
7 H. Naderi, S. Hajati, M. Ghaedi, and J. Espinos, Highly selective few-ppm NO gas-sensing based on necklace-like nanofibers of ZnO/CdO nn type I heterojunction, Sens. Actuators B Chem., 297, 126774 (2019).   DOI
8 H. W. Lee, J.-K. Kim, and Y.-K. Park, Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar, Carbon Lett., 28, 81-86 (2018).   DOI
9 C. H. Kwak, S. W. Seo, M. I. Kim, J. S. Im, S. C. Kang, NO gas sensor with enhanced sensitivity using activated carbon prepared from pyrolysis fuel oil and polyethylene terephthalate, Appl. Chem. Eng., 32, 42-48 (2021).   DOI
10 J. Bae, Chemical sensors using polymer/graphene composite and the effect of graphene content on sensor behavior, Appl. Chem. Eng., 31, 25-29 (2020).
11 J. Zeng and J. Xu, Microwave absorption properties of CuO/Co/carbon fiber composites synthesized by thermal oxidation, J. Alloys Compd., 493, L39-L41 (2010).   DOI
12 A. Rydosz, The use of copper oxide thin films in gas-sensing applications, Coatings, 8, 425 (2018).   DOI
13 A. Stolz, S. Le Floch, L. Reinert, S. M. Ramos, J. TuaillonCombes, Y. Soneda, P. Chaudet, D. Baillis, N. Blanchard, and L. Duclaux, Melamine-derived carbon sponges for oil-water separation, Carbon, 107, 198-208 (2016).   DOI
14 I. Raya, H. H. Kzar, Z. H. Mahmoud, A. Al Ayub Ahmed, A. Z. Ibatova, and E. Kianfar, A review of gas sensors based on carbon nanomaterial, Carbon Lett., 32, 1-26 (2021).
15 F. Wang, Y. Liu, H. Zhao, L. Cui, L. Gai, X. Han, and Y. Du, Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics, Chem. Eng. J., 450, 138160 (2022).   DOI
16 C. Zhang, Z.-L. Hou, B.-X. Zhang, H.-M. Fang, and S. Bi, High sensitivity self-recovery ethanol sensor based on polyporous graphene oxide/melamine composites, Carbon, 137, 467-474 (2018).   DOI
17 T.-t. Li, N. Bao, A.-f. Geng, H. Yu, Y. Yang, and X.-t. Dong, Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2O3 sensitization, R. Soc. Open Sci., 5, 171788 (2018).   DOI
18 G. Murali, M. Reddeppa, C. Seshendra Reddy, S. Park, T. Chandrakalavathi, M.-D. Kim, and I. In, Enhancing the charge carrier separation and transport via nitrogen-doped graphene quantum dot-TiO2 nanoplate hybrid structure for an efficient NO gas sensor, ACS Appl. Mater. Interfaces, 12, 13428-13436 (2020).   DOI
19 Y. Li, S. Li, T. Zhang, L. Shi, S. Liu, Y. Zhao, 3D hierarchical Co3O4/reduced graphene oxide/melamine derived carbon foam as a comprehensive microwave absorbing material, J. Alloys Compd., 792, 424-431 (2019).   DOI
20 Z. Wang, H. Yu, Y. Xiao, L. Guo, L. Zhang, X. Dong, Polydopamine mediated modification of manganese oxide on melamine sponge for photothermocatalysis of gaseous formaldehyde, J. Hazard. Mater., 407, 124795 (2021).   DOI
21 J. Stejskal, J. Vilcakova, M. Jurca, H. Fei, M. Trchova, Z. Kolska, J. Prokes, and I. Krivka, Polypyrrole-coated melamine sponge as a precursor for conducting macroporous nitrogen-containing carbons, Coatings, 12, 324 (2022).   DOI
22 R. Zhang, Z. Hu, H. Wei, S. Zhang, and X. Meng, Adsorption of perfluorooctane sulfonate on carbonized poly-melamine-formaldehyde sponge, Sci. Total Environ., 727, 138626 (2020).   DOI
23 J. H. Byeon, H. S. Yoon, K. Y. Yoon, S. K. Ryu, and J. Hwang, Electroless copper deposition on a pitch-based activated carbon fiber and an application for NO removal, Surf. Coat. Technol., 202, 3571-3578 (2008).   DOI
24 I.-H. Hwang and S. S. Kim, A study of the formation of binary intermediate layer on Pd-based hydrogen separation membrane using various types of metal oxides, Appl. Chem. Eng., 29, 196-200 (2018).   DOI
25 M.-J. Kim, K. H. Kim, Y. Kim, B. Yoo, and Y.-S. Lee, Volatile organic compounds (VOCs) removal using ACFs with electroless plating CuO as catalysts, Carbon Lett., 30, 675-682 (2020).   DOI
26 H. Duan, Y. Yang, J. Patel, N. Burke, Y. Zhai, P. A. Webley, D. Chen, and M. Long, The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts, Carbon Lett., 25, 33-42 (2018).   DOI
27 J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors, Chem. Mater., 18, 867-871 (2006).   DOI
28 L. Wang, B. Han, Z. Wang, L. Dai, H. Zhou, Y. Li, and H. Wang, Effective improvement of sensing performance of amperometric NO2 sensor by Ag-modified nano-structured CuO sensing electrode, Sens. Actuators B Chem., 207, 791-800 (2015).   DOI
29 S. Paik, Selective copper-catalyzed azidation and amination of aryl halides with sodium azide, Appl. Chem. Eng., 32, 224-227 (2021).   DOI
30 Y. Bai, F. Qin, and Y. Lu, Lightweight Ni/CNT decorated melamine sponge with sensitive strain sensing performance for ultrahigh electromagnetic absorption in both GHz and THz bands, Chem. Eng. J., 429, 132393 (2022).   DOI
31 S. C. Kang, J. S. Im, and Y.-S. Lee, Hydrogen sensing property of porous carbon nanofibers by controlling pore structure and depositing Pt catalyst, Appl. Chem. Eng., 22, 243-248 (2011).
32 K. M. Amin, F. Muench, U. Kunz, and W. Ensinger, 3D NiCo-Layered double Hydroxide@ Ni nanotube networks as integrated free-standing electrodes for nonenzymatic glucose sensing, J. Colloid Interface Sci., 591, 384-395 (2021).   DOI
33 Y. J. Choi, K. M. Lee, K. J. Yun, and Y.-S. Lee, Effect of oxyfluorination on electroless Ni deposition of carbon nanotubes (CNTs) and their EMI shielding properties, Appl. Chem. Eng., 30, 212-218 (2019).   DOI
34 O. Duman, C.O. Diker, and S. Tunc, Development of highly hydrophobic and superoleophilic fluoro organothiol-coated carbonized melamine sponge/rGO composite absorbent material for the efficient and selective absorption of oily substances from aqueous environments, J. Environ. Chem. Eng., 9, 105093 (2021).   DOI
35 P. Zhang, R. Wang, M. He, J. Lang, S. Xu, and X. Yan, 3D Hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries, Adv. Funct. Mater., 26, 1354-1364 (2016).   DOI
36 X. Sun, P. He, Z. Gao, Y. Liao, S. Weng, Z. Zhao, H. Song, and Z. Zhao, Multi-crystalline N-doped Cu/CuxO/C foam catalyst derived from alkaline N-coordinated HKUST-1/CMC for enhanced 4-nitrophenol reduction, J. Colloid Interface Sci., 553, 1-13 (2019).   DOI
37 Y. Li, J. Liang, Z. Tao, and J. Chen, CuO particles and plates: synthesis and gas-sensor application, Mater. Res. Bull., 43, 2380-2385 (2008).   DOI
38 X. Bai, Z. Liu, H. Lv, J. Chen, M. Khan, J. Wang, B. Sun, Y. Zhang, K. Kan, and K. Shi, N-doped three-dimensional needle-like CoS2 bridge connection Co3O4 core-shell structure as high-efficiency room temperature NO2 gas sensor, J. Hazard. Mater., 423, 127120 (2022).   DOI
39 F. Sun, J. Gao, X. Liu, Y. Yang, and S. Wu, Controllable nitrogen introduction into porous carbon with porosity retaining for investigating nitrogen doping effect on SO2 adsorption, Chem. Eng. J., 290, 116-124 (2016).   DOI
40 Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu, and T. Zhang, High-performance reduced graphene oxide-based room-temperature NO2 sensors: A combined surface modification of SnO2 nanoparticles and nitrogen doping approach, Sens. Actuators B Chem., 242, 269-279 (2017).   DOI