References
- M. Xie, X Liu, X Cao, M Guo & X Li. (2020). Trends in prevalence and incidence of chronic respiratory diseases from 1990 to 2017. Respir Res, 21(1), 49. https://doi.org/10.1186/s12931-020-1291-8
- I. Tsiligianni, E. Metting, T. van der Molen, N. Chavannes & J. Kocks. (2016). Morning and night symptoms in primary care COPD patients: a cross-sectional and longitudinal study. An UNLOCK study from the IPCRG. NPJ Prim Care Respir Med, 26. 16040. https://doi.org/10.1038/npjpcrm.2016.40
- J. Milara, T. Peiro, A. Serrano & J. Cortijo. (2013). Epithelial to mesenchymal transition is increased in patients with COPD and induced by cigarette smoke. Thorax, 68, 410-420. https://doi.org/10.1136/thoraxjnl-2012-201761
- R. Chatterjee & J. Chatterjee. (2020). ROS and oncogenesis with special reference to EMT and stemness. Eur J Cell Biol, 99, 151073. https://doi.org/10.1016/j.ejcb.2020.151073
- J. X. Jiang et al. (2017). Rac1 signaling regulates cigarette smoke-induced inflammation in the lung via the Erk1/2 MAPK and STAT3 pathways. Biochim Biophys Acta, 1863(7), 1778-1788. DOI : 10.1016/j.bbadis.2017.04.013
- D. G. Menter, R. L. Schilsky & R. N. DuBois. (2010). Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clin. Cancer Res, 16, 1384-1390. https://doi.org/10.1158/1078-0432.CCR-09-0788
- T. H. Chu. (2014). Celecoxib suppresses hepatoma stemness and progression by up-regulating PTEN. Oncotarget, 5, 1475-1490. https://doi.org/10.18632/oncotarget.1745
- P Venkatesan. (2011). The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials, 32, 3794-3806. https://doi.org/10.1016/j.biomaterials.2011.01.027
- D. Chakroborty. (2011). Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc. Natl. Acad. Sci. USA, 108, 20730-20735. https://doi.org/10.1073/pnas.1108696108
- K. H. Yoo, Y. S. Kim & S. S. Sheen. (2011). Prevalence of chronic obstructive pulmonary disease in Korea: the fourth Korean National Health and Nutrition Examination Survey, 2008. Respirology, 16(4), 659-665. https://doi.org/10.1111/j.1440-1843.2011.01951.x
- J. C. Hogg, F Chu & S Utokaparch. (2004). The nature of small-airway obstruction in chronic obstructive pulmonary disease. New England Journal of Medicine, 350(26), 2645-2653. https://doi.org/10.1056/NEJMoa032158
- A. Butler, G. M. Walton & E. Sapey. (2018). Neutrophilic inflammation in the pathogenesis of chronic obstructive pulmonary disease. COPD: Journal of Chronic Obstructive Pulmonary Disease, 15(4), 392-404. https://doi.org/10.1080/15412555.2018.1476475
- P. J. Barnes. (2009). The cytokine network in chronic obstructive pulmonary disease. American Journal of Respiratory Cell and Molecular Biology, 41(6), 631-638. https://doi.org/10.1165/rcmb.2009-0220TR
- M. Rincon & C. G. Irvin. (2012). Role of IL-6 in asthma and other inflammatory pulmonary diseases. International Journal of Biological Sciences, 8(9), 1281-1290. https://doi.org/10.7150/ijbs.4874
- V. M. Keatings, P. D. Collins, D. M. Scott & P. J. Barnes. (1996). Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. American Journal of Respiratory and Critical Care Medicine, 153(2), 530-534. https://doi.org/10.1164/ajrccm.153.2.8564092
- P. J. Barnes. (2008). Immunology of asthma and chronic obstructive pulmonary disease. Nature Reviews Immunology, 8(3), 183-192. https://doi.org/10.1038/nri2254
- G. G. Brusselle, G. F. Joos & K. R. Bracke. (2011). New insights into the immunology of chronic obstructive pulmonary disease. The Lancet, 378(9795), 1015-1026. https://doi.org/10.1016/S0140-6736(11)60988-4
- J. C. Hogg & W. Timens. (2009). The pathology of chronic obstructive pulmonary disease. Annual Review of Pathology: Mechanisms of Disease, 4(1), 435-459. https://doi.org/10.1146/annurev.pathol.4.110807.092145
- A. Soltani, S. Sohal. S. Weston, R. Wood-Baker & E. H. Walters. (2012). Vessel-associated transforming growth factor-beta1 (TGF-β1) is increased in the bronchial reticular basement membrane in COPD and normal smokers. PLoS ONE, 7(6), e39736. https://doi.org/10.1371/journal.pone.0039736
- M. Rincon & C. G. Irvin. (2012). Role of IL-6 in asthma and other inflammatory pulmonary diseases. International Journal of Biological Sciences, 8(9), 1281-1290. https://doi.org/10.7150/ijbs.4874
- M. Javier, N. Rafael, J. Gustavo, P. Teresa, S. Adela & R. Mercedes. (2012). Sphingosine-1-phosphate is increased in patients with idiopathic pulmonary fibrosis and mediates epithelial to mesenchymal transition. Thorax, 67(2), 147-156. https://doi.org/10.1136/thoraxjnl-2011-200026
- N. Kaosia, S. Sukhwinder Singh, P Gregory, P Rahul & H. W. Eugene. (2014). Epithelial-mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer. Expert Rev Respir Med, 8(5), 547-559. https://doi.org/10.1586/17476348.2014.948853
- D. Bartis, N. Mise, R. Y. Mahida, O. Eickelberg & D. R. Thickett. (2014). Epithelial- mesenchymal transition in lung development and disease: does it exist and is it important? Thorax, 69, 760-65. https://doi.org/10.1136/thoraxjnl-2013-204608
- Q. Wang, Y. Wang, Y. Zhang, Y. Zhang & W. Xiao. (2013). The role of uPAR in epithelial-mesenchymal transition in small airway epithelium of patients with chronic obstructive pulmonary disease. Respir. Res, 14, 67. https://doi.org/10.1186/1465-9921-14-67