Acknowledgement
We gratefully acknowledge the Algerian Ministry of Higher Education for providing financial support. The support of civil engineering department of the University of Sherbrooke Canada is also acknowledged. The authors would like to thank the technicians of "the research laboratory on alternatives cementitious materials" of the University of Sherbrooke for their technical assistance during the experimental investigations.
References
- ACI Committee 209 (2009), Report on Factors Affecting Shrinkage and Creep of Hardened Concrete, ACI 209.1R-05, 1-12.
- ACI Committee 544 (2002), Report on Fiber Reinforced Concrete, ACI 544.1-96, 1-66.
- Addis, B. (2012), "Building with Reclaimed Components and Materials: A Design Handbook for Reuse and Recycling", Earthscan Publishers, London, UK. https://doi.org/10.4324/9781849770637
- Ahmed, S., Bukhari, I.A., Siddiqui, J.I. and Qureshi, S.A. (2006), "A study on properties of polypropylene fiber reinforced", Proceeding of the 31st Conference on Our World in Concrete and Structure, Singapore, August.
- Altalabani, D., Bzeni, D.K.H. and Linsel, S. (2020), "Mechanical properties and load deflection relationship of polypropylene fiber reinforced self-compacting lightweight concrete", Constr. Build. Mater., 252(1), 119084. https://doi.org/10.1016/j.conbuildmat.2020.119084
- Alwesabi, E.A.H., AbuBakar, B.H., Alshaikh, I.M.H. and Akil, H.M. (2020), "Experimental investigation on mechanical properties of plain and rubberised concretes with steel-polypropylene hybrid fibre", Constr. Build. Mater., 233(1), 117194. https://doi.org/10.1016/j.conbuildmat.2019.117194
- Aly, T., Sanjayan, J.G. and Collins, F. (2008), "Effect of polypropylene fibers on shrinkage and cracking of concretes", Mater. Struct., 41(10), 1741-1753. https://doi.org/10.1617/s11527-008-9361-2
- ASTM C150/150M (2020), Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA, USA. www.astm.org
- ASTM C157/C157M (2017), Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete, ASTM International, West Conshohocken, PA, USA. www.astm.org
- ASTM C39/C39M (2018), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA. www.astm.org
- ASTM C494/C494M, (2005), Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM C642 (2013), "Standard Test Method for Density, Absorption, and Voids in Hardened Concrete", ASTM International, West Conshohocken, PA, USA. www.astm.org
- Bentur, A. and Mindess, S. (2019), Fibre Reinforced Cementitious Composites, CRS Press, (2nd Edition), London, UK, 624 p.
- Bertelsen, I.M.G., Ottosen, L.M. and Fischer, G. (2019), "Quantitative analysis of the influence of synthetic fibres on plastic shrinkage cracking using digital image correlation", Constr. Build. Mater., 199(1), 124-137. https://doi.org/10.1016/j.conbuildmat.2018.11.268
- Chandra, S.D., Tanish, D., Ramkrishna, D., Bibhuti, B.M. and Jitendra, K. (2018), "Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete", Constr. Build. Mater., 189(1), 649-659. https://doi.org/10.1016/j.conbuildmat.2018.09.036
- Cho, D.H., Yun, S.H., Kim, J.K., Lim, S.H., Park, M., Lee, G.W. and Lee, S.S. (2004), "Effects of fiber surface treatment and sizing on the dynamic mechanical and interfacial properties of carbon/nylon 6 composite", Carb. Lett., 5(1), 1-5.
- Faraj, R.H., Sherwani, A.F.H. and Daraei, A. (2019), "Mechanical, fracture and durability properties of selfcompacting high strength concrete containing recycled polypropylene plastic particles", J. Build. Eng., 25(1), 100808. https://doi.org/10.1016/j.jobe.2019.100808
- Geok, W.L., Kim, H.M., Zhi, P.L. and Zainah, I. (2020), "Mechanical properties and drying shrinkage of lightweight cementitious composite incorporating perlite microspheres and polypropylene fibers", Constr. Build. Mater., 246(1), 118410. https://doi.org/10.1016/j.conbuildmat.2020.118410
- Goncalves, J.P., Tavares, L.M., Toledo, R.D., Fairbain, E.M.R. and Cunha, E.R. (2007), "Comparaison of natural and manufacturers fine aggregates in cement mortar", Cem. Concrete Res., 37(6), 924-932. https://doi.org/10.1016/j.cem.con.res.2007.03.009
- Hadjoudja, M., Khenfer, M.M., Mesbah, H.A. and Yahia, A. (2014), "Statistical models to optimize fiberreinforced dune sand concrete", Arab. J. Sci. Eng., 39(1), 2721-2731. https://doi.org/10.1007/s13369-013-0774-z
- Herve, E., Care, S. and Seguin, J.P. (2010), "Influence of the porosity gradient in cement paste matrix on the mechanical behaviour of mortar", Cem. Concrete Res., 40(7), 1060-1071. https://doi.org/10.1016/j.cemconres.2010.02.010
- Karahan, O. and Atis, C.D. (2011), "The durability properties of polypropylene fiber reinforced fly ash concrete", Mater. Des., 32(2), 1044-1049. https://doi.org/10.1016/j.matdes.2010.07.011
- Kovler, K. and Zhutovsky, S. (2006), "Overview and future trends of shrinkage research", Mater. Struct., 39(9), 827-847. https://doi.org/10.1617/s11527-006-9114-z
- Marthong, C. (2019), "Effect of waste cement bag fibers on the mechanical strength of concrete", Adv. Mater. Res., Int. J., 8(2), 103-115. https://doi.org/10.12989/amr.2019.8.2.103
- Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers", Adv. Mater. Res., Int. J., 8(2), 137-154. https://doi.org/10.12989/amr.2019.8.2.137
- Meddah, M.S. and Bencheikh, M. (2009), "Properties of concrete reinforced with different kinds of industrial waste fibre materials", Constr. Build. Mater., 23(10), 3196-3205. https://doi.org/10.1016/j.conbuildmat. 2009.06.017
- Merli, R., Preziosi, M., Acampora, A., Lucchetti, M.C. and Petrucci, E. (2020), "Recycled fibers in reinforced concrete: A systematic literature review", J. Clean. Prod., 2481(1), 119207.
- Nili, M. and Afroughsabet, V. (2010), "The effects of silica fume and polypropylene fibres on the impact resistance and mechanical properties of concrete", Constr. Build. Mater., 24(6), 927-933. https://doi.org/10.1016/j.conbuildmat.2009.11.025
- Niranjana, P.T., Demappa, T., Harish, V. and Prashantha, K. (2015), "Synergistic effect of clay and polypropylene short fibers in epoxy based ternary composite hybrids", Adv. Mater. Res., Int. J., 4(2), 97-111. http://doi.org/10.12989/amr.2015.4.2.097
- Office for National Statistics (2018), Construction Statistics Annual Report, UK. https://www.ons.gov.uk/businessindustryandtrade/constructionindustry/datasets
- Orasutthikul, S., Unno, D. and Yokota, H. (2017), "Effectiveness of recycled nylon fiber from waste fishing net with respect to fiber reinforced mortar", Constr. Build. Mater., 146(1), 594-602. http://dx.doi.org/10.1016/j.conbuildmat.2017.04.134
- Richardson, A.E. (2006), "Compressive strength of concrete with polypropylene fiber additions", Struct. Surv., 24(2), 138-153. https://doi.org/10.1108/02630800610666673
- Segre, N., Tonella, E. and Joekes, I. (1998), "Evaluation of the stability of polypropylene fibres in environments aggressive to cement-based materials", Cem. Concrete Res., 28(1), 75-81. https://doi.org/10.1016/S0008-8846(97)00220-2
- Setti, F., Ezziane, K. and Setti, B. (2020), "Investigation of mechanical characteristics and specimen size effect of steel fibers reinforced concrete", J. Adh. Sci. Tech., 34(13), 1426-1441. https://doi.org/10.1080/01694243.2019.1709340
- Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength properties of nylon- and polypropylene fibre reinforced concretes", Cem. Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
- Thorneycroft, J., Orr, J., Savoikar, P. and Ball, R.J. (2018), "Performance of structural concrete with recycled plastic waste as a partial replacement for sand", Constr. Build. Mater., 161(1), 63-69. https://doi.org/10.1016/j.conbuildmat.2017.11.127
- Vairagade, V.S., Kene, K.S. and Deshpande, N.V. (2012), "Investigation on compressive and tensile behaviour of fibrillated Polypropylene fibers reinforced concrete", Inter. J. Eng. Res. Appl., 2(3), 1111-1115.
- Voigt, T., Bui, V.K. and Shah, P. (2004), "Drying shrinkage of concrete reinforced with fibers and weldedwire fabric", ACI Mater. J., 101(3), 233-241.
- Wang, Y., Wu, H.C. and Li, V.C. (2000), "Concrete reinforcement with recycled fibers", J. Mater. Civil Eng., 12(4), 314-319. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:4(314)
- Yin, S., Tuladhar, R., Riella, J., Chung, D., Collister, T., Combe, C., Sivakugan, N. and Deng, Z. (2015), "Post-cracking performance of recycled polypropylene fibre in concrete", Constr. Build. Mater., 101(1), 1069-1077. https://doi.org/10.1016/j.conbuildmat.2015.10.056
- Yin, S., Tuladhar, R., Riella, J., Chung, D., Collister, T., Combe, M. and Sivakugan, N. (2016), "Comparative evaluation of virgin and recycled polypropylene fiber reinforced concrete", Constr. Build. Mater., 114(1), 134-141. https://DOI:10.1016/j.conbuildmat.2016.03.162
- Zeiml, M., Leithner, D., Lackner, R. and Mang, H.A. (2006), "How do polypropylene fibers improve the spalling behaviour of in -situ concrete?", Cem. Concrete Res., 36(5), 929-942. https://doi.org/10.1016/j.cemconres.2005.12.018
- Zeyad, A.M., Khan, A.H. and Tayeh, B.A. (2020), "Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers", J. Mater. Res. Tech., 9(1), 806-818. https://doi.org/10.1016/j.jmrt.2019.11.021
- Zhang, P. and Li, Q. (2013), "Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume", Compos.-Part B Eng., 45(1), 1587-1594. https://doi.org/10.1016/j.compositesb.2012.10.006
- Zheng, Z. and Feldman, D. (1995), "Synthetic fibre - reinforced concrete", Prog. Poly. Sci., 20(2), 185-210. https://doi.org/10.1016/0079-6700(94)00030-6
- Zhong, H. and Zhang, M. (2020), "Experimental study on engineering properties of concrete reinforced with hybrid recycled tyre steel and polypropylene fibres", J. Clean. Prod., 259(1), 120914. https://doi.org/10.1016/j.jclepro.2020.120914