Browse > Article
http://dx.doi.org/10.12989/amr.2021.10.4.267

Effect of recycled polypropylene fiber on high strength concrete and normal strength concrete properties  

Touahri, Ahmed (Civil Engineering Department, University Hassiba BenBouali of Chlef)
Branci, Taieb (Civil Engineering Department, University Hassiba BenBouali of Chlef)
Yahia, Ammar (Civil Engineering Department, University of Sherbrooke)
Ezziane, Karim (Geomaterials Laboratory, University Hassiba BenBouali of Chlef)
Publication Information
Advances in materials Research / v.10, no.4, 2021 , pp. 267-281 More about this Journal
Abstract
An experimental study was undertaken to evaluate the performance of recycled polypropylene fiber (RPF) in concrete. The RPF materials were recycled from woven bags and used in concrete at various volume fractions corresponding to 0.1%, 0.2%, and 0.3%. Two different classes of strength, corresponding to normal and high strength concrete, were investigated. Fiber was used as substitution of coarse aggregate in concrete. The dosage of fiber was used at relatively lower dosages to avoid altering fluidity and to limit the reduction in coarse aggregate content. On the other hand, a commercial polypropylene fiber (PPF) was used at equivalent dosages than RPF for comparisons purposes. Test results indicated that optimized RPF volumes can secure comparable mechanical performance than those obtained with commercial PPF. On the other hand, the use of both fiber types resulted in lower compressive strength (10 to 20%), higher flexural strength (up to 27%), and lower elastic modulus (by 16%). Furthermore, the use of RPF type reduced the drying shrinkage (6 to 10%) of normal and high strength concrete types and increased the permeable pore void of both concrete types.
Keywords
compressive strength; elastic modulus; flexural strength; high strength concrete; permeable pore void; recycled polypropylene fiber; shrinkage;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hadjoudja, M., Khenfer, M.M., Mesbah, H.A. and Yahia, A. (2014), "Statistical models to optimize fiberreinforced dune sand concrete", Arab. J. Sci. Eng., 39(1), 2721-2731. https://doi.org/10.1007/s13369-013-0774-z   DOI
2 Chandra, S.D., Tanish, D., Ramkrishna, D., Bibhuti, B.M. and Jitendra, K. (2018), "Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete", Constr. Build. Mater., 189(1), 649-659. https://doi.org/10.1016/j.conbuildmat.2018.09.036   DOI
3 Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength properties of nylon- and polypropylene fibre reinforced concretes", Cem. Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033   DOI
4 Zeiml, M., Leithner, D., Lackner, R. and Mang, H.A. (2006), "How do polypropylene fibers improve the spalling behaviour of in -situ concrete?", Cem. Concrete Res., 36(5), 929-942. https://doi.org/10.1016/j.cemconres.2005.12.018   DOI
5 Zeyad, A.M., Khan, A.H. and Tayeh, B.A. (2020), "Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers", J. Mater. Res. Tech., 9(1), 806-818. https://doi.org/10.1016/j.jmrt.2019.11.021   DOI
6 Zheng, Z. and Feldman, D. (1995), "Synthetic fibre - reinforced concrete", Prog. Poly. Sci., 20(2), 185-210. https://doi.org/10.1016/0079-6700(94)00030-6   DOI
7 Zhong, H. and Zhang, M. (2020), "Experimental study on engineering properties of concrete reinforced with hybrid recycled tyre steel and polypropylene fibres", J. Clean. Prod., 259(1), 120914. https://doi.org/10.1016/j.jclepro.2020.120914   DOI
8 Geok, W.L., Kim, H.M., Zhi, P.L. and Zainah, I. (2020), "Mechanical properties and drying shrinkage of lightweight cementitious composite incorporating perlite microspheres and polypropylene fibers", Constr. Build. Mater., 246(1), 118410. https://doi.org/10.1016/j.conbuildmat.2020.118410   DOI
9 Cho, D.H., Yun, S.H., Kim, J.K., Lim, S.H., Park, M., Lee, G.W. and Lee, S.S. (2004), "Effects of fiber surface treatment and sizing on the dynamic mechanical and interfacial properties of carbon/nylon 6 composite", Carb. Lett., 5(1), 1-5.
10 Faraj, R.H., Sherwani, A.F.H. and Daraei, A. (2019), "Mechanical, fracture and durability properties of selfcompacting high strength concrete containing recycled polypropylene plastic particles", J. Build. Eng., 25(1), 100808. https://doi.org/10.1016/j.jobe.2019.100808   DOI
11 Goncalves, J.P., Tavares, L.M., Toledo, R.D., Fairbain, E.M.R. and Cunha, E.R. (2007), "Comparaison of natural and manufacturers fine aggregates in cement mortar", Cem. Concrete Res., 37(6), 924-932. https://doi.org/10.1016/j.cem.con.res.2007.03.009   DOI
12 Herve, E., Care, S. and Seguin, J.P. (2010), "Influence of the porosity gradient in cement paste matrix on the mechanical behaviour of mortar", Cem. Concrete Res., 40(7), 1060-1071. https://doi.org/10.1016/j.cemconres.2010.02.010   DOI
13 Nili, M. and Afroughsabet, V. (2010), "The effects of silica fume and polypropylene fibres on the impact resistance and mechanical properties of concrete", Constr. Build. Mater., 24(6), 927-933. https://doi.org/10.1016/j.conbuildmat.2009.11.025   DOI
14 Kovler, K. and Zhutovsky, S. (2006), "Overview and future trends of shrinkage research", Mater. Struct., 39(9), 827-847. https://doi.org/10.1617/s11527-006-9114-z   DOI
15 Marthong, C. (2019), "Effect of waste cement bag fibers on the mechanical strength of concrete", Adv. Mater. Res., Int. J., 8(2), 103-115. https://doi.org/10.12989/amr.2019.8.2.103   DOI
16 Karahan, O. and Atis, C.D. (2011), "The durability properties of polypropylene fiber reinforced fly ash concrete", Mater. Des., 32(2), 1044-1049. https://doi.org/10.1016/j.matdes.2010.07.011   DOI
17 Meddah, M.S. and Bencheikh, M. (2009), "Properties of concrete reinforced with different kinds of industrial waste fibre materials", Constr. Build. Mater., 23(10), 3196-3205. https://doi.org/10.1016/j.conbuildmat. 2009.06.017   DOI
18 Merli, R., Preziosi, M., Acampora, A., Lucchetti, M.C. and Petrucci, E. (2020), "Recycled fibers in reinforced concrete: A systematic literature review", J. Clean. Prod., 2481(1), 119207.
19 Niranjana, P.T., Demappa, T., Harish, V. and Prashantha, K. (2015), "Synergistic effect of clay and polypropylene short fibers in epoxy based ternary composite hybrids", Adv. Mater. Res., Int. J., 4(2), 97-111. http://doi.org/10.12989/amr.2015.4.2.097   DOI
20 Office for National Statistics (2018), Construction Statistics Annual Report, UK. https://www.ons.gov.uk/businessindustryandtrade/constructionindustry/datasets
21 Orasutthikul, S., Unno, D. and Yokota, H. (2017), "Effectiveness of recycled nylon fiber from waste fishing net with respect to fiber reinforced mortar", Constr. Build. Mater., 146(1), 594-602. http://dx.doi.org/10.1016/j.conbuildmat.2017.04.134   DOI
22 Richardson, A.E. (2006), "Compressive strength of concrete with polypropylene fiber additions", Struct. Surv., 24(2), 138-153. https://doi.org/10.1108/02630800610666673   DOI
23 Segre, N., Tonella, E. and Joekes, I. (1998), "Evaluation of the stability of polypropylene fibres in environments aggressive to cement-based materials", Cem. Concrete Res., 28(1), 75-81. https://doi.org/10.1016/S0008-8846(97)00220-2   DOI
24 Vairagade, V.S., Kene, K.S. and Deshpande, N.V. (2012), "Investigation on compressive and tensile behaviour of fibrillated Polypropylene fibers reinforced concrete", Inter. J. Eng. Res. Appl., 2(3), 1111-1115.
25 Voigt, T., Bui, V.K. and Shah, P. (2004), "Drying shrinkage of concrete reinforced with fibers and weldedwire fabric", ACI Mater. J., 101(3), 233-241.
26 Wang, Y., Wu, H.C. and Li, V.C. (2000), "Concrete reinforcement with recycled fibers", J. Mater. Civil Eng., 12(4), 314-319. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:4(314)   DOI
27 Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers", Adv. Mater. Res., Int. J., 8(2), 137-154. https://doi.org/10.12989/amr.2019.8.2.137   DOI
28 Altalabani, D., Bzeni, D.K.H. and Linsel, S. (2020), "Mechanical properties and load deflection relationship of polypropylene fiber reinforced self-compacting lightweight concrete", Constr. Build. Mater., 252(1), 119084. https://doi.org/10.1016/j.conbuildmat.2020.119084   DOI
29 Setti, F., Ezziane, K. and Setti, B. (2020), "Investigation of mechanical characteristics and specimen size effect of steel fibers reinforced concrete", J. Adh. Sci. Tech., 34(13), 1426-1441. https://doi.org/10.1080/01694243.2019.1709340   DOI
30 Addis, B. (2012), "Building with Reclaimed Components and Materials: A Design Handbook for Reuse and Recycling", Earthscan Publishers, London, UK. https://doi.org/10.4324/9781849770637   DOI
31 Ahmed, S., Bukhari, I.A., Siddiqui, J.I. and Qureshi, S.A. (2006), "A study on properties of polypropylene fiber reinforced", Proceeding of the 31st Conference on Our World in Concrete and Structure, Singapore, August.
32 Thorneycroft, J., Orr, J., Savoikar, P. and Ball, R.J. (2018), "Performance of structural concrete with recycled plastic waste as a partial replacement for sand", Constr. Build. Mater., 161(1), 63-69. https://doi.org/10.1016/j.conbuildmat.2017.11.127   DOI
33 Alwesabi, E.A.H., AbuBakar, B.H., Alshaikh, I.M.H. and Akil, H.M. (2020), "Experimental investigation on mechanical properties of plain and rubberised concretes with steel-polypropylene hybrid fibre", Constr. Build. Mater., 233(1), 117194. https://doi.org/10.1016/j.conbuildmat.2019.117194   DOI
34 Aly, T., Sanjayan, J.G. and Collins, F. (2008), "Effect of polypropylene fibers on shrinkage and cracking of concretes", Mater. Struct., 41(10), 1741-1753. https://doi.org/10.1617/s11527-008-9361-2   DOI
35 ASTM C150/150M (2020), Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA, USA. www.astm.org
36 ASTM C157/C157M (2017), Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete, ASTM International, West Conshohocken, PA, USA. www.astm.org
37 Zhang, P. and Li, Q. (2013), "Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume", Compos.-Part B Eng., 45(1), 1587-1594. https://doi.org/10.1016/j.compositesb.2012.10.006   DOI
38 ACI Committee 209 (2009), Report on Factors Affecting Shrinkage and Creep of Hardened Concrete, ACI 209.1R-05, 1-12.
39 ACI Committee 544 (2002), Report on Fiber Reinforced Concrete, ACI 544.1-96, 1-66.
40 Yin, S., Tuladhar, R., Riella, J., Chung, D., Collister, T., Combe, M. and Sivakugan, N. (2016), "Comparative evaluation of virgin and recycled polypropylene fiber reinforced concrete", Constr. Build. Mater., 114(1), 134-141. https://DOI:10.1016/j.conbuildmat.2016.03.162   DOI
41 ASTM C494/C494M, (2005), Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA, www.astm.org.
42 ASTM C642 (2013), "Standard Test Method for Density, Absorption, and Voids in Hardened Concrete", ASTM International, West Conshohocken, PA, USA. www.astm.org
43 Bentur, A. and Mindess, S. (2019), Fibre Reinforced Cementitious Composites, CRS Press, (2nd Edition), London, UK, 624 p.
44 Bertelsen, I.M.G., Ottosen, L.M. and Fischer, G. (2019), "Quantitative analysis of the influence of synthetic fibres on plastic shrinkage cracking using digital image correlation", Constr. Build. Mater., 199(1), 124-137. https://doi.org/10.1016/j.conbuildmat.2018.11.268   DOI
45 ASTM C39/C39M (2018), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA. www.astm.org
46 Yin, S., Tuladhar, R., Riella, J., Chung, D., Collister, T., Combe, C., Sivakugan, N. and Deng, Z. (2015), "Post-cracking performance of recycled polypropylene fibre in concrete", Constr. Build. Mater., 101(1), 1069-1077. https://doi.org/10.1016/j.conbuildmat.2015.10.056   DOI