DOI QR코드

DOI QR Code

Ultra-robust bonding between MXene nanosheets and stretchable, self-healable microfibers

  • Shin, Yoo Bin (School of Advanced Materials Engineering, Jeonbuk National University) ;
  • Kim, Youngmin (Display Research Center, Korea Electronics Technology Institute) ;
  • Kang, Chang Goo (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Oh, Jung-Min (School of Advanced Materials Engineering, Jeonbuk National University) ;
  • Kim, Jong-Woong (School of Advanced Materials Engineering, Jeonbuk National University)
  • Received : 2021.07.19
  • Accepted : 2021.08.22
  • Published : 2021.11.25

Abstract

To develop a reliable fibrous device, a strong bond between conducting materials and fibers must be ensured. While the external surface of the film is relatively flat, making it easy to deposit the electrode materials uniformly, the walls of the polymer fibers inside the porous film pose a greater challenge for ensuring a uniform coating and robust bonding with electrode material. Herein, a microfibril-based porous film was prepared by electrospinning polybutadiene-based urethane (PBU), a newly synthesized self-healing polymer, and Ti3C2-based MXene nanosheets were coated thereon to fabricate a pressure sensor whose resistance decreases with pressure. The PBU microfibrils were crosslinked under mild conditions via Diels-Alder (DA) reaction by exploiting low activation energy of the PBU. An exceptionally robust bonding between the PBU and MXene was enabled by subjecting the PBU to a retro-DA and subsequent DA reactions. The temporary increase in surface fluidity of the PBU leaded to a conformal contact between the MXene and fibers without collapse of fibrous structure, resulting in an ultra-robust bond between them. A stretchable and self-healable pressure sensor was implemented by removing unnecessary MXenes by applying ultrasonic energy to the thus-fabricated sample. The fabricated sensor showed a pressure sensitivity of around 27.9 /kPa for a wide range of pressure which is the highest level among the reported stretchable self-healing pressure sensors, while maintaining its performance even after 1000 cycles of stretching and pressing. Further, sensors attached around the carotid artery could be used to precisely detect P-, T-, and D-waves arising from blood pressure.

Keywords

References

  1. Abbas, S., Kumar, M., Kim, H.S., Kim, J., Lee, J.H. (2018), "Silver-nanowire-embedded transparent metal-oxide heterojunction Schottky photodetector", ACS Appl. Mater. Interf, 10, 14292-14298. https://doi.org/10.1021/acsami.8b05141.
  2. Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., Gogotsi, Y. (2017), "Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)", Chem. Mater., 29, 7633-7644. https://doi.org/10.1021/acs.chemmater.7b02847.
  3. Appuhamillage, G.A., Reagan, J.C., Khorsandi, S., Davidson, J. R., Voit, W., Smaldone, R.A. (2017), "3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels-Alder reaction", Polym. Chem., 8, 2087-2092. https://doi.org/10.1039/C7PY00310B.
  4. Baby, T., Jose E.T., George, G., Varkey, V., Cherian, S.K. (2019), "A new approach for the shaping up of very fine and beadless UV light absorbing polycarbonate fibers by electrospinning", Polym. Test., 80, 106103. https://doi.org/10.1016/j.polymertesting.2019.106103.
  5. Bai, N., Wang, L., Wang, Q., Deng, J., Wang, Y., Lu, P., Huang, J., Li, G., Zhang, Y., Yang, J., Xie, K., Zhao, X., Guo, C. F. (2020), "Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity", Nat. Commun., 11, 209. https://doi.org/10.1038/s41467-019-14054-9.
  6. Cai, G., Yu, Z., Tong, P., Tang, D. (2019), "Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone", Nanoscale, 11, 15659-15667. https://doi.org/10.1039/C9NR05797H.
  7. Chen, J., Li, Z., Ni, F., Ouyang, W., Fang, X. (2020), "Bio-inspired transparent MXene electrodes for flexible UV photodetectors", Mater. Horizons, 7, 1828-1833. https://doi.org/10.1039/D0MH00394H.
  8. Chen, J., Tong, P., Huang, L., Yu, Z., Tang, D. (2019), "Ti3C2 MXene nanosheet-based capacitance immunoassay with tyramine-enzyme repeats to detect prostate-specific antigen on interdigitated micro-comb electrode", Electrochim. Acta, 319, 375-381. https://doi.org/10.1016/j.electacta.2019.07.010.
  9. Cheng, B., Wu, P. (2021), "Scalable fabrication of Kevlar/Ti3C2TxMXene intelligent wearable fabrics with multiple sensory capabilities", ACS Nano, 15, 8676-8685. https://doi.org/10.1021/acsnano.1c00749.
  10. Fu, X., Wang, L., Zhao, L., Yuan, Z., Zhang, Y., Wang, D., Wang, D., Li, J., Li, D., Shulga, V., Shen, G., Han, W. (2021), "Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin", Adv. Funct. Mater., 31, 2010533. https://doi.org/10.1002/adfm.202010533.
  11. Halim, J., Cook, K.M., Naguib, M., Eklund, P., Gogotsi, Y., Rosen, J., Barsoum, M.W. (2016), "X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)", Appl. Surf. Sci., 362, 406-417. https://doi.org/10.1016/j.apsusc.2015.11.089.
  12. Hantanasirisakul, K., Zhao, M.Q., Urbankowski, P., Halim, J., Anasori, B., Kota, S., Ren, C.E., Barsoum, M.W., Gogotsi, Y. (2016), "Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties", Adv. Electron. Mater., 2(6), 1600050. https://doi.org/10.1002/aelm.201600050.
  13. Heo, G., Pyo, K., Lee, D. H., Kim, Y., Kim, J.-W. (2016), "Critical role of Diels-Adler adducts to realise stretchable transparent electrodes based on silver nanowires and silicone elastomer", Sci. Rep., 6, 25358. https://doi.org/10.1038/srep25358 (2016).
  14. Huang, C., Thomas, N.L. (2018), "Fabricating porous poly (lactic acid) fibres via electrospinning", Eur. Polym. J., 99, 464-476. https://doi.org/10.1016/j.eurpolymj.2017.12.025.
  15. Huang, L., Yu, Z., Chen, J., Tang, D. (2020), "Pressure-based bioassay perceived by a flexible pressure sensor with synergistic enhancement of the photothermal effect", ACS Appl. Bio Mater., 3(12), 9156-9163. https://pubs.acs.org/doi/10.1021/acsabm.0c01447.
  16. Jiang, Z., Nayeem, M.O.G., Fukuda, K., Ding, S., Jin, H., Yokota, T., Inoue, D., Hashizume, D., Someya, T. (2019), "Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement", Adv. Mater., 31(37), 1903446. https://doi.org/10.1002/adma.201903446.
  17. Kalani, S., Kohandani, R., Bagherzadeh, R. (2020), "Flexible electrospun PVDF-BaTiO3 hybrid structure pressure sensor with enhanced efficiency", RSC Adv., 10(58), 35090. https://doi.org/10.1039/d0ra05675h.
  18. Khan, A., Kisannagar, R.R., Gouda, C., Gupta, D., Lin, H.C. (2020), "Highly stretchable supramolecular conductive self-healable gels for injectable adhesive and flexible sensor applications", J. Mater. Chem. A, 8(38), 19954-19964. https://doi.org/10.1039/D0TA07543D.
  19. Kim, K.S., Choi, S. Bin, Kim, D.U., Lee, C.R., Kim, J.W. (2018), "Photo-induced healing of stretchable transparent electrodes based on thermoplastic polyurethane with embedded metallic nanowires", J. Mater. Chem. A, 6(26), 12420-12429. https://doi.org/10.1039/C8TA02979B.
  20. Lee, S., Franklin, S., Hassani, F.A., Yokota, T., Nayeem, M.O.G., Wang, Y., Leib, R., Cheng, G., Franklin, D.W., Someya, T. (2020a), "Nanomesh Pressure Sensor for Monitoring Finger Manipulation without Sensory Interference", Science, 370, 966-970. https://doi.org/10.1126/science.abc9735.
  21. Lee, Y., Kim, S.J., Kim, Y.J., Lim, Y., Chae, Y., Lee, B.J., Kim, Y.T., Han, H., Gogotsi, Y., Ahn, C.W. (2020b), "Oxidation-resistant titanium carbide MXene films", J. Mater. Chem. A, 8(2), 573-581. https://doi.org/10.1039/C9TA07036B.
  22. Li, J., Bao, R., Tao, J., Peng, Y., Pan, C. (2018), "Recent progress in flexible pressure sensor arrays: from design to applications", J. Mater. Chem. C, 6(44), 11878-11892. https://doi.org/10.1039/C8TC02946F.
  23. Li, X., Chen, W., Qian, Q., Huang, H., Chen, Y., Wang, Z., Chen, Q., Yang, J., Li, J., Mai, Y.W. (2021), "Electrospinning-based strategies for battery materials", Adv. Energy Mater., 11(2), 2000845. https://doi.org/10.1002/aenm.202000845.
  24. Liu, Q., Zhu, J., Zhang, L., Qiu, Y. (2018), "Recent Advances in Energy Materials by Electrospinning", Renew. Sust. Energy Rev., 81, 1825-1858. https://doi.org/10.1016/j.rser.2017.05.281.
  25. Luo, J., Gao, S., Luo, H., Wang, L., Huang, X., Guo, Z., Lai, X., Lin, L., Li, R.K.Y., Gao, J. (2021), "Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics", Chem. Eng. J., 406, 126898. https://doi.org/10.1016/j.cej.2020.126898.
  26. Mannsfeld, S.C.B., Tee, B.C.K., Stoltenberg, R.M., Chen, C.V. H.H., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C., Bao, Z. (2010), "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers", Nat. Mater., 9(10), 859-864. https://doi.org/10.1038/nmat2834.
  27. Mehrez, S., Karati, S.A., DolatAbadi, P.T., Shah, S.N.R., Azam, S., Khorami, M., Asslizadeh, H. (2020), "Nonlocal dynamic modeling of mass sensors consisting of graphene sheets based on strain gradient theory", Adv. Nano Res., 9(4), 221-235. http://doi.org/10.12989/anr.2020.9.4.221.
  28. Moraveji, M., Keshvari, H., Karkhaneh, A., Bonakdar, S., Hadi, A., Haghighipour, N. (2021), "The effect of collagen/ polycaprolactone fibrous scaffold decorated with graphene nanoplatelet and low-frequency electromagnetic field on neuronal gene expression by stem cells", Adv. Nano Res., 10(6), 549-557. http://doi.org/10.12989/anr.2021.10.6.549.
  29. Oliveira, J.C., Laborie, M.P., Roucoules, V. (2020), "Thermodynamic and kinetic study of Diels-Alder reaction between furfuryl alcohol and N-Hydroxymaleimides-An assessment for materials application", Molecules, 25(2), 243. https://doi.org/10.3390/molecules25020243.
  30. Park, K.H., Shin, C., Song, Y.S., Lee, H.J., Shin, C., Kim, Y. (2019), "Recyclable and mendable cellulose-reinforced composites crosslinked with Diels-Alder adducts", Polymers, 11(1), 117. https://doi.org/10.3390/polym11010117.
  31. Pyo, K., Lee, D. H., Kim, Y., Kim, J. (2016), "Extremely rapid and simple healing of a transparent conductor based on Ag nanowires and polyurethane with a Diels-Alder network", J. Mater. Chem. C, 4(5), 972-977. https://doi.org/10.1039/C5TC04030B.
  32. Robby, A.I., Lee, G., Lee, K.D., Jang, Y.C., Park, S.Y. (2021), "GSH-responsive self-healable conductive hydrogel of highly sensitive strain-pressure sensor for cancer cell detection", Nano Today, 39, 101178. https://doi.org/10.1016/j.nantod.2021.101178.
  33. Ruth, S.R.A., Feig, V.R., Tran, H., Bao, Z. (2020), "Microengineering Pressure Sensor Active Layers for Improved Performance", Adv. Funct. Mater., 30(39), 2003491. https://doi.org/10.1002/adfm.202003491.
  34. Sang, Z., Ke, K., Manas-Zloczower, I. (2019), "Design strategy for porous composites aimed at pressure sensor application", Small, 15(45), 1903487. https://doi.org/10.1002/smll.201903487.
  35. Seok, S.H., Choo, S., Kwak, J., Ju, H., Han, J.H., Kang, W.S., Lee, J., Kim, S.Y., Lee, D.H., Lee, J., Wang, J., Song, S., Jo, W., Jung, B.M., Chae, H.G., Son, J.S., Kwon, S.Y. (2021), "Synthesis of high quality 2D carbide MXene flakes using a highly purified MAX precursor for ink applications", Nanosc. Adv., 3(2), 517-527. https://doi.org/10.1039/D0NA00398K.
  36. Shi, J., Wang, L., Dai, Z., Zhao, L., Du, M., Li, H., Fang, Y. (2018), "Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range", Small, 14(27), 1800819. https://doi.org/10.1002/smll.201800819.
  37. Tang, J., Huang, X., Qiu, T., Peng, X., Wu, T., Wang, L., Luo, B., Wang, L. (2021), "Interlayer Space Engineering of MXenes for Electrochemical Energy Storage Applications", Chem. A Eur. J., 27(6), 1921-1940. https://doi.org/10.1002/chem.202002283.
  38. Thirumoorthi, M., Thomas Joseph Prakash, J. (2016), "Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique", J. Asian Ceram. Soc., 4(1), 124-132. https://doi.org/10.1016/j.jascer.2016.01.001.
  39. Xiao, J., Tan, Y., Song, Y., Zheng, Q. (2018), "A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor", J. Mater. Chem. A, 6(19), 9074-9080. https://doi.org/10.1039/C7TA11348J.
  40. Xiong, Y., Shen, Y., Tian, L., Hu, Y., Zhu, P., Sun, R., Wong, C. P. (2020), "A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring", Nano Energy, 70, 104436. https://doi.org/10.1016/j.nanoen.2019.104436.
  41. Wang, T., Zhang, Y., Liu, Q., Cheng, W., Wang, X., Pan, L., Xu, B., Xu, H. (2018), "A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing", Adv. Funct. Mater., 28(7), 170551. https://doi.org/10.1002/adfm.201705551.
  42. Wang, W., Zheng, Y., Jin, X., Sun, Y., Lu, B., Wang, H., Fang, J., Shao, H., Lin, T. (2019), "Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes", Nano Energy, 56, 588-594. https://doi.org/10.1016/j.nanoen.2018.11.082.
  43. Wang, Y., Chao, M., Wan, P., Zhang, L. (2020), "A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring", Nano Energy, 70, 104560. https://doi.org/10.1016/j.nanoen.2018.11.082.
  44. Yang, J.C., Kim, J.O., Oh, J., Kwon, S.Y., Sim, J.Y., Kim, D.W., Choi, H.B., Park, S. (2019), "Microstructured porous pyramidbased ultrahigh sensitive pressure sensor insensitive to strain and temperature", ACS Appl. Mater. Interfaces, 11(21), 19472-19480. https://doi.org/10.1021/acsami.9b03261.
  45. Yang, Z., Li, H., Zhang, S., Lai, X., Zeng, X. (2021), "Superhydrophobic MXene@ carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor", Chem. Eng. J., 425, 130462. https://doi.org/10.1016/j.cej.2021.130462.
  46. Yu, X., Yu, X., Zhang, J., Chen, L., Long, Y., Zhang, D. (2017), "Optical properties of conductive silver-nanowire films with different nanowire lengths", Nano Res., 10(11), 3706-3714. https://doi.org/10.1007/s12274-017-1583-6.
  47. Yu, Z., Cai, G., Tong, P., Tang, D. (2019), "Saw-toothed microstructure-based flexible pressure sensor as the signal readout for point-of-care immunoassay", ACS Sens., 4(9), 2272-2276. https://pubs.acs.org/doi/10.1021/acssensors.9b01168.
  48. Yu, Z., Cai, G., Liu, X., Tang, D. (2020), "Platinum nanozymetriggered pressure-based immunoassay using a three-dimensional polypyrrole foam-based flexible pressure sensor", ACS Appl. Mater. Interf., 12(36), 40133-40140. https://pubs.acs.org/doi/10.1021/acsami.0c12074.
  49. Zeng, R., Tao, J., Tang, D., Knopp, D., Shu, J., Cao, X. (2020), "Biometric-based tactile chemomechanical transduction: An adaptable strategy for portable bioassay", Nano Energy, 71, 104580. https://doi.org/10.1016/j.nanoen.2020.104580.
  50. Zeng, R., Wang, W., Chen, M., Wan, Q., Wang, C., Knopp, D, Tang, D. (2021), "CRISPR-Cas12a-driven MXene-PEDOT:PSS piezoresistive wireless biosensor", Nano Energy, 82, 105711. https://doi.org/10.1016/j.nanoen.2020.105711.
  51. Zhang, C., Nicolosi, V. (2019), "Graphene and MXene-based transparent conductive electrodes and supercapacitors", Energy Storage Mater., 16, 102-125. https://doi.org/10.1016/j.ensm.2018.05.003.
  52. Zhao, W., Qu, X., Xu, Q., Lu, Y., Yuan, W., Wang, W., Wang, Q., Huang, W., Dong, X. (2020), "Ultrastretchable, self-healable, and wearable epidermal sensors based on ultralong Ag nanowires composited binary-networked hydrogels", Adv. Electron. Mater., 6(7), 2000267. https://doi.org/10.1002/aelm.202000267.
  53. Zholobko, O., Wu, X.F., Zhou, Z., Aulich, T., Thakare, J., Hurley, J. (2020), "A comparative experimental study of the hygroscopic and mechanical behaviors of electrospun nanofiber membranes and solution-cast films of polybenzimidazole", J. Appl. Polym. Sci., 137(39), e49639. https://doi.org/10.1002/app.49639.
  54. Zhu, Z., Li, R., Pan, T. (2018), "Imperceptible epidermal-iontronic interface for wearable sensing", Adv. Mater., 30(6), 1705122. https://doi.org/10.1002/adma.201705122.
  55. Zhu, Y., Wu, Y., Wang, G., Wang, Z., Tan, Q., Zhao, L., Wu, D. (2020), "A flexible capacitive pressure sensor based on an electrospun polyimide nanofiber membrane", Org. Electron., 84, 105759. https://doi.org/10.1016/j.orgel.2020.105759.