Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.5.453

Ultra-robust bonding between MXene nanosheets and stretchable, self-healable microfibers  

Shin, Yoo Bin (School of Advanced Materials Engineering, Jeonbuk National University)
Kim, Youngmin (Display Research Center, Korea Electronics Technology Institute)
Kang, Chang Goo (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Oh, Jung-Min (School of Advanced Materials Engineering, Jeonbuk National University)
Kim, Jong-Woong (School of Advanced Materials Engineering, Jeonbuk National University)
Publication Information
Advances in nano research / v.11, no.5, 2021 , pp. 453-466 More about this Journal
Abstract
To develop a reliable fibrous device, a strong bond between conducting materials and fibers must be ensured. While the external surface of the film is relatively flat, making it easy to deposit the electrode materials uniformly, the walls of the polymer fibers inside the porous film pose a greater challenge for ensuring a uniform coating and robust bonding with electrode material. Herein, a microfibril-based porous film was prepared by electrospinning polybutadiene-based urethane (PBU), a newly synthesized self-healing polymer, and Ti3C2-based MXene nanosheets were coated thereon to fabricate a pressure sensor whose resistance decreases with pressure. The PBU microfibrils were crosslinked under mild conditions via Diels-Alder (DA) reaction by exploiting low activation energy of the PBU. An exceptionally robust bonding between the PBU and MXene was enabled by subjecting the PBU to a retro-DA and subsequent DA reactions. The temporary increase in surface fluidity of the PBU leaded to a conformal contact between the MXene and fibers without collapse of fibrous structure, resulting in an ultra-robust bond between them. A stretchable and self-healable pressure sensor was implemented by removing unnecessary MXenes by applying ultrasonic energy to the thus-fabricated sample. The fabricated sensor showed a pressure sensitivity of around 27.9 /kPa for a wide range of pressure which is the highest level among the reported stretchable self-healing pressure sensors, while maintaining its performance even after 1000 cycles of stretching and pressing. Further, sensors attached around the carotid artery could be used to precisely detect P-, T-, and D-waves arising from blood pressure.
Keywords
MXene; polybutadiene; pressure sensor; $Ti_3C_2Tx$; urethane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yu, Z., Cai, G., Liu, X., Tang, D. (2020), "Platinum nanozymetriggered pressure-based immunoassay using a three-dimensional polypyrrole foam-based flexible pressure sensor", ACS Appl. Mater. Interf., 12(36), 40133-40140. https://pubs.acs.org/doi/10.1021/acsami.0c12074.   DOI
2 Zhang, C., Nicolosi, V. (2019), "Graphene and MXene-based transparent conductive electrodes and supercapacitors", Energy Storage Mater., 16, 102-125. https://doi.org/10.1016/j.ensm.2018.05.003.   DOI
3 Zhu, Z., Li, R., Pan, T. (2018), "Imperceptible epidermal-iontronic interface for wearable sensing", Adv. Mater., 30(6), 1705122. https://doi.org/10.1002/adma.201705122.   DOI
4 Zhu, Y., Wu, Y., Wang, G., Wang, Z., Tan, Q., Zhao, L., Wu, D. (2020), "A flexible capacitive pressure sensor based on an electrospun polyimide nanofiber membrane", Org. Electron., 84, 105759. https://doi.org/10.1016/j.orgel.2020.105759.   DOI
5 Li, X., Chen, W., Qian, Q., Huang, H., Chen, Y., Wang, Z., Chen, Q., Yang, J., Li, J., Mai, Y.W. (2021), "Electrospinning-based strategies for battery materials", Adv. Energy Mater., 11(2), 2000845. https://doi.org/10.1002/aenm.202000845.   DOI
6 Huang, L., Yu, Z., Chen, J., Tang, D. (2020), "Pressure-based bioassay perceived by a flexible pressure sensor with synergistic enhancement of the photothermal effect", ACS Appl. Bio Mater., 3(12), 9156-9163. https://pubs.acs.org/doi/10.1021/acsabm.0c01447.   DOI
7 Lee, S., Franklin, S., Hassani, F.A., Yokota, T., Nayeem, M.O.G., Wang, Y., Leib, R., Cheng, G., Franklin, D.W., Someya, T. (2020a), "Nanomesh Pressure Sensor for Monitoring Finger Manipulation without Sensory Interference", Science, 370, 966-970. https://doi.org/10.1126/science.abc9735.   DOI
8 Li, J., Bao, R., Tao, J., Peng, Y., Pan, C. (2018), "Recent progress in flexible pressure sensor arrays: from design to applications", J. Mater. Chem. C, 6(44), 11878-11892. https://doi.org/10.1039/C8TC02946F.   DOI
9 Lee, Y., Kim, S.J., Kim, Y.J., Lim, Y., Chae, Y., Lee, B.J., Kim, Y.T., Han, H., Gogotsi, Y., Ahn, C.W. (2020b), "Oxidation-resistant titanium carbide MXene films", J. Mater. Chem. A, 8(2), 573-581. https://doi.org/10.1039/C9TA07036B.   DOI
10 Tang, J., Huang, X., Qiu, T., Peng, X., Wu, T., Wang, L., Luo, B., Wang, L. (2021), "Interlayer Space Engineering of MXenes for Electrochemical Energy Storage Applications", Chem. A Eur. J., 27(6), 1921-1940. https://doi.org/10.1002/chem.202002283.   DOI
11 Luo, J., Gao, S., Luo, H., Wang, L., Huang, X., Guo, Z., Lai, X., Lin, L., Li, R.K.Y., Gao, J. (2021), "Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics", Chem. Eng. J., 406, 126898. https://doi.org/10.1016/j.cej.2020.126898.   DOI
12 Oliveira, J.C., Laborie, M.P., Roucoules, V. (2020), "Thermodynamic and kinetic study of Diels-Alder reaction between furfuryl alcohol and N-Hydroxymaleimides-An assessment for materials application", Molecules, 25(2), 243. https://doi.org/10.3390/molecules25020243.   DOI
13 Chen, J., Li, Z., Ni, F., Ouyang, W., Fang, X. (2020), "Bio-inspired transparent MXene electrodes for flexible UV photodetectors", Mater. Horizons, 7, 1828-1833. https://doi.org/10.1039/D0MH00394H.   DOI
14 Jiang, Z., Nayeem, M.O.G., Fukuda, K., Ding, S., Jin, H., Yokota, T., Inoue, D., Hashizume, D., Someya, T. (2019), "Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement", Adv. Mater., 31(37), 1903446. https://doi.org/10.1002/adma.201903446.   DOI
15 Chen, J., Tong, P., Huang, L., Yu, Z., Tang, D. (2019), "Ti3C2 MXene nanosheet-based capacitance immunoassay with tyramine-enzyme repeats to detect prostate-specific antigen on interdigitated micro-comb electrode", Electrochim. Acta, 319, 375-381. https://doi.org/10.1016/j.electacta.2019.07.010.   DOI
16 Halim, J., Cook, K.M., Naguib, M., Eklund, P., Gogotsi, Y., Rosen, J., Barsoum, M.W. (2016), "X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)", Appl. Surf. Sci., 362, 406-417. https://doi.org/10.1016/j.apsusc.2015.11.089.   DOI
17 Mannsfeld, S.C.B., Tee, B.C.K., Stoltenberg, R.M., Chen, C.V. H.H., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C., Bao, Z. (2010), "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers", Nat. Mater., 9(10), 859-864. https://doi.org/10.1038/nmat2834.   DOI
18 Thirumoorthi, M., Thomas Joseph Prakash, J. (2016), "Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique", J. Asian Ceram. Soc., 4(1), 124-132. https://doi.org/10.1016/j.jascer.2016.01.001.   DOI
19 Zholobko, O., Wu, X.F., Zhou, Z., Aulich, T., Thakare, J., Hurley, J. (2020), "A comparative experimental study of the hygroscopic and mechanical behaviors of electrospun nanofiber membranes and solution-cast films of polybenzimidazole", J. Appl. Polym. Sci., 137(39), e49639. https://doi.org/10.1002/app.49639.   DOI
20 Moraveji, M., Keshvari, H., Karkhaneh, A., Bonakdar, S., Hadi, A., Haghighipour, N. (2021), "The effect of collagen/ polycaprolactone fibrous scaffold decorated with graphene nanoplatelet and low-frequency electromagnetic field on neuronal gene expression by stem cells", Adv. Nano Res., 10(6), 549-557. http://doi.org/10.12989/anr.2021.10.6.549.   DOI
21 Xiong, Y., Shen, Y., Tian, L., Hu, Y., Zhu, P., Sun, R., Wong, C. P. (2020), "A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring", Nano Energy, 70, 104436. https://doi.org/10.1016/j.nanoen.2019.104436.   DOI
22 Heo, G., Pyo, K., Lee, D. H., Kim, Y., Kim, J.-W. (2016), "Critical role of Diels-Adler adducts to realise stretchable transparent electrodes based on silver nanowires and silicone elastomer", Sci. Rep., 6, 25358. https://doi.org/10.1038/srep25358 (2016).   DOI
23 Pyo, K., Lee, D. H., Kim, Y., Kim, J. (2016), "Extremely rapid and simple healing of a transparent conductor based on Ag nanowires and polyurethane with a Diels-Alder network", J. Mater. Chem. C, 4(5), 972-977. https://doi.org/10.1039/C5TC04030B.   DOI
24 Robby, A.I., Lee, G., Lee, K.D., Jang, Y.C., Park, S.Y. (2021), "GSH-responsive self-healable conductive hydrogel of highly sensitive strain-pressure sensor for cancer cell detection", Nano Today, 39, 101178. https://doi.org/10.1016/j.nantod.2021.101178.   DOI
25 Sang, Z., Ke, K., Manas-Zloczower, I. (2019), "Design strategy for porous composites aimed at pressure sensor application", Small, 15(45), 1903487. https://doi.org/10.1002/smll.201903487.   DOI
26 Seok, S.H., Choo, S., Kwak, J., Ju, H., Han, J.H., Kang, W.S., Lee, J., Kim, S.Y., Lee, D.H., Lee, J., Wang, J., Song, S., Jo, W., Jung, B.M., Chae, H.G., Son, J.S., Kwon, S.Y. (2021), "Synthesis of high quality 2D carbide MXene flakes using a highly purified MAX precursor for ink applications", Nanosc. Adv., 3(2), 517-527. https://doi.org/10.1039/D0NA00398K.   DOI
27 Wang, Y., Chao, M., Wan, P., Zhang, L. (2020), "A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring", Nano Energy, 70, 104560. https://doi.org/10.1016/j.nanoen.2018.11.082.   DOI
28 Huang, C., Thomas, N.L. (2018), "Fabricating porous poly (lactic acid) fibres via electrospinning", Eur. Polym. J., 99, 464-476. https://doi.org/10.1016/j.eurpolymj.2017.12.025.   DOI
29 Kalani, S., Kohandani, R., Bagherzadeh, R. (2020), "Flexible electrospun PVDF-BaTiO3 hybrid structure pressure sensor with enhanced efficiency", RSC Adv., 10(58), 35090. https://doi.org/10.1039/d0ra05675h.   DOI
30 Wang, T., Zhang, Y., Liu, Q., Cheng, W., Wang, X., Pan, L., Xu, B., Xu, H. (2018), "A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing", Adv. Funct. Mater., 28(7), 170551. https://doi.org/10.1002/adfm.201705551.   DOI
31 Zeng, R., Tao, J., Tang, D., Knopp, D., Shu, J., Cao, X. (2020), "Biometric-based tactile chemomechanical transduction: An adaptable strategy for portable bioassay", Nano Energy, 71, 104580. https://doi.org/10.1016/j.nanoen.2020.104580.   DOI
32 Yang, J.C., Kim, J.O., Oh, J., Kwon, S.Y., Sim, J.Y., Kim, D.W., Choi, H.B., Park, S. (2019), "Microstructured porous pyramidbased ultrahigh sensitive pressure sensor insensitive to strain and temperature", ACS Appl. Mater. Interfaces, 11(21), 19472-19480. https://doi.org/10.1021/acsami.9b03261.   DOI
33 Yu, X., Yu, X., Zhang, J., Chen, L., Long, Y., Zhang, D. (2017), "Optical properties of conductive silver-nanowire films with different nanowire lengths", Nano Res., 10(11), 3706-3714. https://doi.org/10.1007/s12274-017-1583-6.   DOI
34 Yu, Z., Cai, G., Tong, P., Tang, D. (2019), "Saw-toothed microstructure-based flexible pressure sensor as the signal readout for point-of-care immunoassay", ACS Sens., 4(9), 2272-2276. https://pubs.acs.org/doi/10.1021/acssensors.9b01168.   DOI
35 Zeng, R., Wang, W., Chen, M., Wan, Q., Wang, C., Knopp, D, Tang, D. (2021), "CRISPR-Cas12a-driven MXene-PEDOT:PSS piezoresistive wireless biosensor", Nano Energy, 82, 105711. https://doi.org/10.1016/j.nanoen.2020.105711.   DOI
36 Zhao, W., Qu, X., Xu, Q., Lu, Y., Yuan, W., Wang, W., Wang, Q., Huang, W., Dong, X. (2020), "Ultrastretchable, self-healable, and wearable epidermal sensors based on ultralong Ag nanowires composited binary-networked hydrogels", Adv. Electron. Mater., 6(7), 2000267. https://doi.org/10.1002/aelm.202000267.   DOI
37 Fu, X., Wang, L., Zhao, L., Yuan, Z., Zhang, Y., Wang, D., Wang, D., Li, J., Li, D., Shulga, V., Shen, G., Han, W. (2021), "Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin", Adv. Funct. Mater., 31, 2010533. https://doi.org/10.1002/adfm.202010533.   DOI
38 Khan, A., Kisannagar, R.R., Gouda, C., Gupta, D., Lin, H.C. (2020), "Highly stretchable supramolecular conductive self-healable gels for injectable adhesive and flexible sensor applications", J. Mater. Chem. A, 8(38), 19954-19964. https://doi.org/10.1039/D0TA07543D.   DOI
39 Cheng, B., Wu, P. (2021), "Scalable fabrication of Kevlar/Ti3C2TxMXene intelligent wearable fabrics with multiple sensory capabilities", ACS Nano, 15, 8676-8685. https://doi.org/10.1021/acsnano.1c00749.   DOI
40 Hantanasirisakul, K., Zhao, M.Q., Urbankowski, P., Halim, J., Anasori, B., Kota, S., Ren, C.E., Barsoum, M.W., Gogotsi, Y. (2016), "Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties", Adv. Electron. Mater., 2(6), 1600050. https://doi.org/10.1002/aelm.201600050.   DOI
41 Liu, Q., Zhu, J., Zhang, L., Qiu, Y. (2018), "Recent Advances in Energy Materials by Electrospinning", Renew. Sust. Energy Rev., 81, 1825-1858. https://doi.org/10.1016/j.rser.2017.05.281.   DOI
42 Park, K.H., Shin, C., Song, Y.S., Lee, H.J., Shin, C., Kim, Y. (2019), "Recyclable and mendable cellulose-reinforced composites crosslinked with Diels-Alder adducts", Polymers, 11(1), 117. https://doi.org/10.3390/polym11010117.   DOI
43 Kim, K.S., Choi, S. Bin, Kim, D.U., Lee, C.R., Kim, J.W. (2018), "Photo-induced healing of stretchable transparent electrodes based on thermoplastic polyurethane with embedded metallic nanowires", J. Mater. Chem. A, 6(26), 12420-12429. https://doi.org/10.1039/C8TA02979B.   DOI
44 Abbas, S., Kumar, M., Kim, H.S., Kim, J., Lee, J.H. (2018), "Silver-nanowire-embedded transparent metal-oxide heterojunction Schottky photodetector", ACS Appl. Mater. Interf, 10, 14292-14298. https://doi.org/10.1021/acsami.8b05141.   DOI
45 Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., Gogotsi, Y. (2017), "Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)", Chem. Mater., 29, 7633-7644. https://doi.org/10.1021/acs.chemmater.7b02847.   DOI
46 Appuhamillage, G.A., Reagan, J.C., Khorsandi, S., Davidson, J. R., Voit, W., Smaldone, R.A. (2017), "3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels-Alder reaction", Polym. Chem., 8, 2087-2092. https://doi.org/10.1039/C7PY00310B.   DOI
47 Mehrez, S., Karati, S.A., DolatAbadi, P.T., Shah, S.N.R., Azam, S., Khorami, M., Asslizadeh, H. (2020), "Nonlocal dynamic modeling of mass sensors consisting of graphene sheets based on strain gradient theory", Adv. Nano Res., 9(4), 221-235. http://doi.org/10.12989/anr.2020.9.4.221.   DOI
48 Baby, T., Jose E.T., George, G., Varkey, V., Cherian, S.K. (2019), "A new approach for the shaping up of very fine and beadless UV light absorbing polycarbonate fibers by electrospinning", Polym. Test., 80, 106103. https://doi.org/10.1016/j.polymertesting.2019.106103.   DOI
49 Bai, N., Wang, L., Wang, Q., Deng, J., Wang, Y., Lu, P., Huang, J., Li, G., Zhang, Y., Yang, J., Xie, K., Zhao, X., Guo, C. F. (2020), "Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity", Nat. Commun., 11, 209. https://doi.org/10.1038/s41467-019-14054-9.   DOI
50 Cai, G., Yu, Z., Tong, P., Tang, D. (2019), "Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone", Nanoscale, 11, 15659-15667. https://doi.org/10.1039/C9NR05797H.   DOI
51 Ruth, S.R.A., Feig, V.R., Tran, H., Bao, Z. (2020), "Microengineering Pressure Sensor Active Layers for Improved Performance", Adv. Funct. Mater., 30(39), 2003491. https://doi.org/10.1002/adfm.202003491.   DOI
52 Wang, W., Zheng, Y., Jin, X., Sun, Y., Lu, B., Wang, H., Fang, J., Shao, H., Lin, T. (2019), "Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes", Nano Energy, 56, 588-594. https://doi.org/10.1016/j.nanoen.2018.11.082.   DOI
53 Yang, Z., Li, H., Zhang, S., Lai, X., Zeng, X. (2021), "Superhydrophobic MXene@ carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor", Chem. Eng. J., 425, 130462. https://doi.org/10.1016/j.cej.2021.130462.   DOI
54 Shi, J., Wang, L., Dai, Z., Zhao, L., Du, M., Li, H., Fang, Y. (2018), "Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range", Small, 14(27), 1800819. https://doi.org/10.1002/smll.201800819.   DOI
55 Xiao, J., Tan, Y., Song, Y., Zheng, Q. (2018), "A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor", J. Mater. Chem. A, 6(19), 9074-9080. https://doi.org/10.1039/C7TA11348J.   DOI