Acknowledgement
본 논문은 2021년도 경기녹색환경지원센터의 연구개발사업에 의하여 지원되었음.
References
- T. Ahmad, K. A. M. Alam, "Sustainable management of water treatment sludge through 3'R' concept" J. Clean. Prod. 124, 1-13, (2016). https://doi.org/10.1016/j.jclepro.2016.02.073
- A. O. Babatunde, Y. Q. Zhao, "Constructive approaches toward water treatment works sludge management: an international review of beneficial reuses" Crit. Rev. Environ. Sci. Technol. 37 129-164, (2007). https://doi.org/10.1080/10643380600776239
- C.Martinez-Garcia, D.Eliche-Quesada, L.Perez-Villarejo, F.J.Iglesias-Godino, F.A.CorpasIglesias, ""J.Environ.Manage.,95S343-S348.
- K.B. Dassanayake, G.Y. Jayasinghe, A. Surapaneni, C. Hetherington, "A review on alum sludge reuse with special reference to agricultural applications and future challenges" Waste Manag., 38, 321-335, (2015). https://doi.org/10.1016/j.wasman.2014.11.025
- M.A. Sanchez-Monedero, C. Modini, M.D. Nobili, L. Leita, A. Roig, ""WasteManag.24325-332, (2004).
- E. H. Kim, J. K. Cho, S. Yim, "Digested sewage sludge solidification by converter slag for landfill cover" Chemosphere, 59 387-395, (2005). https://doi.org/10.1016/j.chemosphere.2004.10.038
- S. D. C. Gomes, J. L. Zhou, W. Li, F. Qu "Recycling of raw water treatment sludge in cementitious composites: effects on heat evolution, compressive strength and microstructure" Resour. Conserv. Recycl. 161 104970, (2020). https://doi.org/10.1016/j.resconrec.2020.104970
- L. G. G. Godoy, A. B. Rohden, M. R. Garcez, E. B. Costa, S. D. Dalt, J. J. O. Andrade, "Valorization of water treatment sludge waste by application as supplementary cementitious material" Constr. Build. Mater. 223 939-950, (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.333
- Y. Liu, Y. Zhuge, C. W. K. Chow, A. Keegan, D. Li, P. N. Pham, J. Huang, R. Siddique, "Utilization of drinking water treatment sludge in concrete paving blocks: Microstructural analysis, durability and leaching properties" J. Environ. Manage. 262 110352, (2020). https://doi.org/10.1016/j.jenvman.2020.110352
- Y. Liu, Y. Zhuge, C. W. K. Chow, A. A. Keegan, D. Li, P. N. Pham, J. Huang, R. Siddique, "Properties and microstructure of concrete blocks incorporating drinking water treatment sludge exposed to early-age carbonation curing" J. Clean. Prod. 261 121257, (2020). https://doi.org/10.1016/j.jclepro.2020.121257
- R. H. Geraldo L. F. R. Fernandes, G. Camarini, "Water treatment sludge and rice husk ash to sustainable geopolymer production" J. Clean. Prod. 149 146-155, (2017). https://doi.org/10.1016/j.jclepro.2017.02.076
- A. M. Heniegal, M. A. Ramadan, A. Naguib, I. S. Agwa, "Study on properties of clay brick incorporating sludge of water treatment plant and agriculture waste" Case Stud. Constr. Mater. 13 e00397, (2020). https://doi.org/10.1016/j.cscm.2020.e00397
- A. Benlalla, M. Elmoussaouiti, M. Dahhou, M. Assafi, "Utilization of water treatment plant sludge in structural ceramics bricks" Appl. Clay Sci. 118 171-177, (2015). https://doi.org/10.1016/j.clay.2015.09.012
- J. H. Tay, K. Y. Show, "Reuse of Wastewater Sludge in Manufacturing Non-Conventional Construction Materals - An Innovative Approach to Ultimate Sludge Disposal" Water sci. Technol. 26 1165-1174, (1992). https://doi.org/10.2166/wst.1992.0558
- C. H. Huang, S. Y. Wang, "Application of water treatment sludge in the manufacturing of lightweight aggregate" Constr. Build. Mater. 43 174-183, (2013). https://doi.org/10.1016/j.conbuildmat.2013.02.016
- C. Huang, J.R. Pan, Y. Liu, "Mixing water treatment residual with excavation waste soil in brick and artificial aggregate making", J. Environ. Eng. 131 272-277, (2005). https://doi.org/10.1061/(ASCE)0733-9372(2005)131:2(272)
- K. D. Kim, J. H. Kim, Y. T. Kim, S. G. Kang, K. G. Lee, "Production of Lightweight Aggregates Using Power Plant Reclaimed Ash", J. Kor. Ceram. Soc. 47 583-589, (2010). https://doi.org/10.4191/KCERS.2010.47.6.583
- H. S. Kim, S. G. Kang, Y. T. Kim, K. G. Lee, J. H. Kim, "Heavy Metal Leaching Characteristics of Silicate Glass Containing EAF Dust" J. Kor. Ceram. Soc. 43 136-141, (2006). https://doi.org/10.4191/KCERS.2006.43.2.136
- C. M. RILEY, "Relation of Chemical Properties to the Bloating of Clays," J. Am. Ceram. Soc., 34, 121-128, (1951). https://doi.org/10.1111/j.1151-2916.1951.tb11619.x
- Y. M. Wie, K. G. Lee, K. H. Lee, "Chemical design of lightweight aggregate to prevent adhesion at bloating activation temperature" J. Asian Ceram. Soc. 8 245-254, (2020). https://doi.org/10.1080/21870764.2020.1725259
- Y. M. Wie, K. G. Lee, "Composition design of the optimum bloating activation condition for artificial lightweight aggregate using coal ash" J. Kor. Ceram. Soc. 57 220-230, (2020). https://doi.org/10.1007/s43207-020-00025-0
- Y. M. Wie, K. G. Lee, K. H. Lee, and, "Optimum conditions for unit processing of artificial lightweight aggregates using the Taguchi method," J. Asian Ceram. Soc., 7, 331-341, (2019). https://doi.org/10.1080/21870764.2019.1638540
- Y. M. Wie and K. G. Lee, "Optimum bloating-activation zone of artificial lightweight aggregate by dynamic parameters," Materials (Basel)., 12, 2, (2019). https://doi.org/10.3390/ma12010002
- Korean Standards Association. "Fly ash" Seoul: South Korea KS L 5405, (2018).
- Korean Standards Association. "Standard test method for bulk density and solid contents in aggregates" Seoul: South Korea KS F 2503, (2017).
- Republic of Korea Ministry of Environment Notice 2016-196 "Waste Process Test Standard"
- G. Cougny, "Specifications sur les matieres premieres argileuses pour la fabrication de granulats legers expanses," Bull. Int. Assoc. Eng. Geol. - Bull. l'Association Int. Geologie l'Ingenieur, vol. 41, no. 1, pp. 47-55, (1990). https://doi.org/10.1007/BF02590206
- Y. M. Wie, K. G. Lee, K. H. Lee "Physicochemical effect of the aeration rate on bloating characterizations of artificial lightweight aggregate" Constr. Build. Mater. 256 119444, (2020). https://doi.org/10.1016/j.conbuildmat.2020.119444
- C. Molinari, C. Zanelli, G. Guarini, M. Dondi "Bloating mechanism in ligheweight aggregates: Effect of Processing variables and properties of the vitreous phase" Constr. Build. Mater. 261 119980, (2020). https://doi.org/10.1016/j.conbuildmat.2020.119980
- M. Balapour, R. Rao, E. J. Garboczi, S. Spatari, Y. G. Hsuan, P. Billen, Y. Farnam "Thermochemical principles of the production of lightweight aggregates from waste coal bottom ash" J. Am. Ceram. Soc., 00, 17458, (2020).
- J. M. Moreno-Maroto, C. J. Cobo-Ceacero, M. Uceda-Rodriguez, T. Cotes-Palomino, C. M. Garcia, J Alonso-Azcarate, "Unraveling the expansion mechanism in lightweight aggregates: Demonstrating that bloating barely requires gas" Constr. Build. Mater. 247 118583, (2020). https://doi.org/10.1016/j.conbuildmat.2020.118583
- K. H. Lee, J. H. Lee, Y. M. Wie, and K. G. Lee, "Bloating Mechanism of Lightweight Aggregates due to Ramping Rate," vol. 2019, Article ID2647391, (2019).
- B. Ayati, V. Ferrandiz-Mas, D. Newport, and C. Cheeseman, "Use of clay in the manufacture of lightweight aggregate," Constr. Build. Mater., 162, 124-131, (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.018
- K. G. Lee "Bloating mechanism of lightweight aggregate with the size" J. Korean Ceram. Soc., 53, 241-245, (2016). https://doi.org/10.4191/kcers.2016.53.2.241
- Y. M. Wie, K. G. Lee "Correlation to the physical properties of green and sintered body of artificial lightweight aggregate with the pelletizing variables", J. Korean Ceram. Soc. 44 568-573, (2007). https://doi.org/10.4191/KCERS.2007.44.1.568
- Y. M. Wie, K. G. Lee "Evaporation and Stabilization of Heavy Metals with Colloid/Interface Properties in EAF Dust-Clay Bodies" Mater. Sci. Forum 544-545 569-572, (2007). https://doi.org/10.4028/www.scientific.net/msf.544-545.569
- J. H. Kim, K. G. Lee, Y. T. Kim, S. K. Kang "Thermal and Leaching Behaviors of EAF Dust-Clay Systems." Mater. Sci. Forum 486-487 105-108, (2005). https://doi.org/10.4028/www.scientific.net/msf.486-487.105
- A. Jena, & K. Gupta, "Characterization of pore structure of filtration media." Fluid/Particle Separation Journal, 14(3), 227-241. (2002).
- A. L. Bulta, G. A. W. Micheal "Evaluation of the efficiency of ceramic filters for water treatment in Kambata Tabaro zone, southern Ethiopia" Environ. Syst. Res. 8 1, (2019). https://doi.org/10.1186/s40068-018-0129-6