DOI QR코드

DOI QR Code

Switching cell structured direct AC-AC converter-based three-phase DVR system using interphase voltage

  • Lee, Hyeongmin (Department of Electrical Engineering, Kyungpook National University) ;
  • Kim, Sanghun (Center for Advanced Power Systems (CAPS), Florida State University) ;
  • Cha, Honnyong (School of Energy Engineering, Kyungpook National University) ;
  • Kim, Heung-Geun (Department of Electrical Engineering, Kyungpook National University)
  • Received : 2021.02.25
  • Accepted : 2021.04.20
  • Published : 2021.07.20

Abstract

This paper presents a dynamic voltage restorer to solve the voltage sag problem that causes the most serious economic loss among various grid accidents. The proposed method, which uses a direct AC-AC converter, consists of a simple controller unlike methods using a voltage source inverter that is controlled using complex operations. Unlike the energy storage type, there is no additional energy storage device, which reduces system cost. In addition, unlike the back-to-back type, energy conversion loss is reduced by one stage conversion. A switching cell-structured direct AC-AC converter that solves the rectification problem without a separate sensor is a reliable structure that reduces the volumes of the passive filters by increasing the switching frequency. In addition, using interphase voltages, it can take a wide range of voltage compensations to compensate for most of the voltage sag in various situations. In this paper, the background of the study is revealed and the operating principles and control schemes of the proposed system are analyzed. Then, the validity of this study is confirmed through simulation and experiment results.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20194030202310).

References

  1. Trinh, Q.N., Lee, H.-H., Chun, T.W.: An enhanced harmonic voltage compensator for general loads in standalone distributed generation systems. J. Power Electron. 13(6), 1070-1079 (2013) https://doi.org/10.6113/JPE.2013.13.6.1070
  2. Xu, H., Ma, X., Sun, D.: Reactive current and control for DFIG based wind turbines during grid voltage sag and swell conditions. J. Power Electron. 15(1), 235-245 (2015) https://doi.org/10.6113/JPE.2015.15.1.235
  3. Nielsen, J., Blaabjerg, F.: A detailed comparison of system topologies for dynamic voltage restorers. IEEE Trans. Ind. Appl. 41(5), 1272-1280 (2005) https://doi.org/10.1109/TIA.2005.855045
  4. Kwon, B.-H., Jeong, G.Y., Han, S.-H., Lee, D.H.: Novel line conditioner with voltage up/down capability. IEEE Trans. Ind. Electron. 49(5), 1110-1119 (2002) https://doi.org/10.1109/TIE.2002.803236
  5. Aeoliza, E.C., Enjeti, N.P., Moran, L.A., Montero-Hernandez, O.C., Kim, S.: Analysis and design of a novel voltage sag compensator for critical loads in electrical power distribution systems. IEEE Trans. Ind. Appl. 39(4), 1143-1150 (2003) https://doi.org/10.1109/TIA.2003.813740
  6. Brumsickle, W.E., Schneider, R.S., Luckjiff, G.A., Divan, D.M., McGranaghan, M.F.: Dynamic sag correctors: cost-effective industrial power line conditioning. IEEE Trans. Ind. Appl. 37(1), 212-217 (2001) https://doi.org/10.1109/28.903150
  7. Subramanian, S., Mishra, M.K.: Interphase AC-AC topology for sag supporter. IEEE Trans. Power Electron. 25(2), 514-518 (2010) https://doi.org/10.1109/TPEL.2009.2027601
  8. Jothibasu, S., Mishra, M.K.: A control scheme for storage less DVR based on characterization of voltage sags. IEEE Trans. Power Del. 29(5), 2261-2269 (2014) https://doi.org/10.1109/TPWRD.2014.2316598
  9. Yang, L.-Y., Wang, C.-L., Liu, J.-H., Jia, C.-X.: A novel phase locked loop for grid-connected converters under non-ideal grid conditions. J Power Electron 15(1), 216-226 (2015) https://doi.org/10.6113/JPE.2015.15.1.216
  10. Jimichi, T., Fujita, H., Akagi, H.: Design and experimentation of a dynamic voltage restorer capable of significantly reducing an energystorage element. IEEE Trans. Ind. Appl. 44(3), 817-825 (2008) https://doi.org/10.1109/TIA.2008.921425
  11. Wang, B., Venkataramanan, G., Illindala, M.: Operation and control of a dynamic voltage restorer using transformer coupled H-bridge converters. IEEE Trans. Power Electron. 21(4), 1053-1061 (2006) https://doi.org/10.1109/TPEL.2006.876836
  12. Choi, N.-S., Han, B.-M., Nho, E.-C., Cha, H.: Dynamic voltage restorer using PWM AC-AC converter. In: Proc. Power Electron. Conf., pp. 2690-2695 (2010)
  13. Jothibasu, S., Mishra, M.K.: An improved direct AC-AC converter for voltage sag mitigation. IEEE Trans. Ind. Electron. 62(1), 21-29 (2015) https://doi.org/10.1109/TIE.2014.2334668
  14. Soeiro, T.B., Petry, C.A., dos Fagundes, J.C.S., Barbi, I.: Direct ac-ac converters using commercial power modules applied to voltage restorers. IEEE Trans. Ind. Electron. 58(1), 278-288 (2011) https://doi.org/10.1109/TIE.2010.2045320
  15. Park, C.-Y., Kwon, J.-M., Kwon, B.-H.: Automatic voltage regulator based on series voltage compensation with ac chopper. IET Power Electron. 5(6), 719-725 (2012) https://doi.org/10.1049/iet-pel.2011.0337
  16. Shin, H., Cha, H., Kim, H.G., Yoo, D.W.: Novel single-phase PWM ac-ac converters solving commutation problem using switching cell structure and coupled inductor. IEEE Trans. Power Electron. 30(4), 2137-2147 (2015) https://doi.org/10.1109/TPEL.2014.2330351
  17. Khan, A.A., Cha, H., Ahmed, H.F.: High-efficiency single-phase ac-ac converters without commutation problem. IEEE Trans. Power Electron. 31(8), 5655-5665 (2016) https://doi.org/10.1109/TPEL.2015.2494605
  18. Kim, S., Kim, H.G., Cha, H.: Dynamic voltage restorer using switching cell structured multilevel ac-ac converter. IEEE Trans. Power Electron. 32(11), 8406-8418 (2017) https://doi.org/10.1109/TPEL.2016.2645722
  19. Peng, F.Z., Chen, L., Zhang, F.: Simple topologies of PWM AC-AC converters. IEEE Power Electron. Lett. 1(1), 10-13 (2003) https://doi.org/10.1109/LPEL.2003.814961
  20. Kwon, B.H., Min, B.D., Kim, J.H.: Novel topologies of AC choppers. IEE Proc. Electron. Power Appl. 143(4), 323-330 (1996) https://doi.org/10.1049/ip-epa:19960374
  21. Tolbert, L.M., Peng, F.Z., Khan, F.H., Li, S.: Switching cells and their implications for power electronic circuits. In: Proc. IEEE Int. Power Electron. Motion Conf., pp. 773-779 (2009)
  22. Khan, F.H., Tolbert, L.M., Peng, F.Z.: Deriving new topologies of DC-DC converters featuring basic switching cells. In: Proc. IEEE Workshop Comput. Power Electron., pp. 328-332 (2006)
  23. Chu, H.-Y., Jou, H.-L., Huang, C.-L.: Transient response of a peak voltage detector for sinusoidal signals. IEEE Trans. Ind. Electron. 39(1), 74-79 (1992) https://doi.org/10.1109/41.121914
  24. Wu, K.-D., Jou, H.-L.: An orthogonal peak detector for multiphase sinusoidal signals. IEEE Trans. Instrum. Meas. 49(6), 1216-1223 (2000) https://doi.org/10.1109/19.893259