Browse > Article
http://dx.doi.org/10.1007/s43236-021-00254-4

Switching cell structured direct AC-AC converter-based three-phase DVR system using interphase voltage  

Lee, Hyeongmin (Department of Electrical Engineering, Kyungpook National University)
Kim, Sanghun (Center for Advanced Power Systems (CAPS), Florida State University)
Cha, Honnyong (School of Energy Engineering, Kyungpook National University)
Kim, Heung-Geun (Department of Electrical Engineering, Kyungpook National University)
Publication Information
Journal of Power Electronics / v.21, no.7, 2021 , pp. 1041-1051 More about this Journal
Abstract
This paper presents a dynamic voltage restorer to solve the voltage sag problem that causes the most serious economic loss among various grid accidents. The proposed method, which uses a direct AC-AC converter, consists of a simple controller unlike methods using a voltage source inverter that is controlled using complex operations. Unlike the energy storage type, there is no additional energy storage device, which reduces system cost. In addition, unlike the back-to-back type, energy conversion loss is reduced by one stage conversion. A switching cell-structured direct AC-AC converter that solves the rectification problem without a separate sensor is a reliable structure that reduces the volumes of the passive filters by increasing the switching frequency. In addition, using interphase voltages, it can take a wide range of voltage compensations to compensate for most of the voltage sag in various situations. In this paper, the background of the study is revealed and the operating principles and control schemes of the proposed system are analyzed. Then, the validity of this study is confirmed through simulation and experiment results.
Keywords
Dynamic voltage restorer; Voltage sag; Switching cell; Direct AC-AC converter; Interphase; Power quality;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Choi, N.-S., Han, B.-M., Nho, E.-C., Cha, H.: Dynamic voltage restorer using PWM AC-AC converter. In: Proc. Power Electron. Conf., pp. 2690-2695 (2010)
2 Nielsen, J., Blaabjerg, F.: A detailed comparison of system topologies for dynamic voltage restorers. IEEE Trans. Ind. Appl. 41(5), 1272-1280 (2005)   DOI
3 Wu, K.-D., Jou, H.-L.: An orthogonal peak detector for multiphase sinusoidal signals. IEEE Trans. Instrum. Meas. 49(6), 1216-1223 (2000)   DOI
4 Trinh, Q.N., Lee, H.-H., Chun, T.W.: An enhanced harmonic voltage compensator for general loads in standalone distributed generation systems. J. Power Electron. 13(6), 1070-1079 (2013)   DOI
5 Xu, H., Ma, X., Sun, D.: Reactive current and control for DFIG based wind turbines during grid voltage sag and swell conditions. J. Power Electron. 15(1), 235-245 (2015)   DOI
6 Kwon, B.-H., Jeong, G.Y., Han, S.-H., Lee, D.H.: Novel line conditioner with voltage up/down capability. IEEE Trans. Ind. Electron. 49(5), 1110-1119 (2002)   DOI
7 Aeoliza, E.C., Enjeti, N.P., Moran, L.A., Montero-Hernandez, O.C., Kim, S.: Analysis and design of a novel voltage sag compensator for critical loads in electrical power distribution systems. IEEE Trans. Ind. Appl. 39(4), 1143-1150 (2003)   DOI
8 Brumsickle, W.E., Schneider, R.S., Luckjiff, G.A., Divan, D.M., McGranaghan, M.F.: Dynamic sag correctors: cost-effective industrial power line conditioning. IEEE Trans. Ind. Appl. 37(1), 212-217 (2001)   DOI
9 Jimichi, T., Fujita, H., Akagi, H.: Design and experimentation of a dynamic voltage restorer capable of significantly reducing an energystorage element. IEEE Trans. Ind. Appl. 44(3), 817-825 (2008)   DOI
10 Subramanian, S., Mishra, M.K.: Interphase AC-AC topology for sag supporter. IEEE Trans. Power Electron. 25(2), 514-518 (2010)   DOI
11 Jothibasu, S., Mishra, M.K.: An improved direct AC-AC converter for voltage sag mitigation. IEEE Trans. Ind. Electron. 62(1), 21-29 (2015)   DOI
12 Kim, S., Kim, H.G., Cha, H.: Dynamic voltage restorer using switching cell structured multilevel ac-ac converter. IEEE Trans. Power Electron. 32(11), 8406-8418 (2017)   DOI
13 Jothibasu, S., Mishra, M.K.: A control scheme for storage less DVR based on characterization of voltage sags. IEEE Trans. Power Del. 29(5), 2261-2269 (2014)   DOI
14 Yang, L.-Y., Wang, C.-L., Liu, J.-H., Jia, C.-X.: A novel phase locked loop for grid-connected converters under non-ideal grid conditions. J Power Electron 15(1), 216-226 (2015)   DOI
15 Wang, B., Venkataramanan, G., Illindala, M.: Operation and control of a dynamic voltage restorer using transformer coupled H-bridge converters. IEEE Trans. Power Electron. 21(4), 1053-1061 (2006)   DOI
16 Shin, H., Cha, H., Kim, H.G., Yoo, D.W.: Novel single-phase PWM ac-ac converters solving commutation problem using switching cell structure and coupled inductor. IEEE Trans. Power Electron. 30(4), 2137-2147 (2015)   DOI
17 Khan, F.H., Tolbert, L.M., Peng, F.Z.: Deriving new topologies of DC-DC converters featuring basic switching cells. In: Proc. IEEE Workshop Comput. Power Electron., pp. 328-332 (2006)
18 Peng, F.Z., Chen, L., Zhang, F.: Simple topologies of PWM AC-AC converters. IEEE Power Electron. Lett. 1(1), 10-13 (2003)   DOI
19 Park, C.-Y., Kwon, J.-M., Kwon, B.-H.: Automatic voltage regulator based on series voltage compensation with ac chopper. IET Power Electron. 5(6), 719-725 (2012)   DOI
20 Khan, A.A., Cha, H., Ahmed, H.F.: High-efficiency single-phase ac-ac converters without commutation problem. IEEE Trans. Power Electron. 31(8), 5655-5665 (2016)   DOI
21 Kwon, B.H., Min, B.D., Kim, J.H.: Novel topologies of AC choppers. IEE Proc. Electron. Power Appl. 143(4), 323-330 (1996)   DOI
22 Soeiro, T.B., Petry, C.A., dos Fagundes, J.C.S., Barbi, I.: Direct ac-ac converters using commercial power modules applied to voltage restorers. IEEE Trans. Ind. Electron. 58(1), 278-288 (2011)   DOI
23 Tolbert, L.M., Peng, F.Z., Khan, F.H., Li, S.: Switching cells and their implications for power electronic circuits. In: Proc. IEEE Int. Power Electron. Motion Conf., pp. 773-779 (2009)
24 Chu, H.-Y., Jou, H.-L., Huang, C.-L.: Transient response of a peak voltage detector for sinusoidal signals. IEEE Trans. Ind. Electron. 39(1), 74-79 (1992)   DOI