DOI QR코드

DOI QR Code

Neutron spectroscopy using pure LaCl3 crystal and the dependence of pulse shape discrimination on Ce-doped concentrations

  • 투고 : 2020.10.07
  • 심사 : 2021.05.17
  • 발행 : 2021.11.25

초록

We report a simple technique for direct neutron spectroscopy using pure LaCl3 crystals. Pure LaCl3 crystals exhibit considerably better pulse shape discrimination (PSD) capabilities with relatively good energy resolution as compared with Ce-doped LaCl3 crystals. Single crystals of pure and Ce-doped LaCl3 were grown using an inhouse-developed Bridgman furnace. PSD capabilities of these crystals were investigated using 241Am and 137Cs sources. Fast neutron detection was tested using a252Cf source and three separate bands corresponding to electron, proton, and alpha were observed. The proton band induced by the 35Cl(n,p)35S reaction can be used for direct neutron spectroscopy because proton energy is proportional to incident neutron energy. Owing to good scintillation performance and excellent PSD capabilities, pure LaCl3 is a promising candidate for space detectors and other applications that necessitate gamma/fast neutron discrimination capability.

키워드

과제정보

The study was supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Science and Technology, Korea (MEST), (No.2018R1A2A1A05022079 and No. 2020R1I1A1A01068102).

참고문헌

  1. M.B. Smith, T. Achtzehn, H.R. Andrews, E.T.H. Clifford, H. Ing, V.D. Kovaltchouk, Fast neutron spectroscopy using Cs2LiYCl6:Ce (CLYC) scintillator, IEEE Trans. Nucl. Sci. 60 (2013) 855-859. https://doi.org/10.1109/TNS.2012.2219068
  2. N. D'Olympia, P. Chowdhury, C.J. Guess, T. Harrington, E.G. Jackson, S. Lakshmi, C.J. Lister, J. Glodo, R. Hawrami, K. Shah, U. Shirwadkar, Optimizing Cs2LiYCl6 for fast neutron spectroscopy, Nucl. Instrum. Methods Phys. Res. A. 694 (2012) 140-146. https://doi.org/10.1016/j.nima.2012.07.021
  3. N. Dolympia, P. Chowdhury, E.G. Jackson, C.J. Lister, Fast neutron response of 6Li-depleted CLYC detectors up to 20 MeV, Nucl. Instrum. Methods Phys. Res. A. 763 (2014) 433-441. https://doi.org/10.1016/j.nima.2014.06.074
  4. T. Brown, P. Chowdhury, E. Doucet, E.G. Jackson, C.J. Lister, A.J. Mitchell, C. Morse, A.M. Rogers, G.L. Wilson, N. D'Olympia, M. Devlin, N. Fotiades, J.A. Gomez, S.M. Mosby, R.O. Nelson, Applications of C7LYC scintillators in fast neutron spectroscopy, Nucl. Instrum. Methods Phys. Res. A. 954 (2020) 161123. https://doi.org/10.1016/j.nima.2018.08.082
  5. D.J. Lawrence, S. Fix, J.O. Goldsten, S.V. Heuer, R.S. Hourani, S. Kerem, P.N. Peplowski, Near-space operation of compact CsI, CLYC, and CeBr3 sensors: results from two high-altitude balloon flights, Nucl. Instrum. Methods Phys. Res. A 905 (2018) 33-46. https://doi.org/10.1016/j.nima.2018.07.026
  6. L. Soundara-Pandian, J. Tower, C. Hines, P. O'Dougherty, J. Glodo, K. Shah, Characterization of large volume CLYC scintillators for nuclear security applications, IEEE Trans. Nucl. Sci. 64 (2017) 1744-1748. https://doi.org/10.1109/TNS.2017.2691552
  7. G. Ericsson, Advanced neutron spectroscopy in fusion Research, J. Fusion Energy 38 (2019) 330-355. https://doi.org/10.1007/s10894-019-00213-9
  8. Q. Zhang, F. Zhang, R.P. Gardner, H. Yan, G. Wu, L. Tian, Q. Chen, Y. Ti, A method for determining density based on gamma ray and fast neutron detection using a Cs2LiYCl6 detector in neutron-gamma density logging, Appl. Radiat. Isot. 142 (2018) 77-84. https://doi.org/10.1016/j.apradiso.2018.09.011
  9. N. Blasi, S. Brambilla, F. Camera, S. Ceruti, A. Giaz, L. Gini, F. Groppi, S. Manenti, A. Mentana, B. Million, S. Riboldi, Fast neutron detection efficiency of 6Li and 7Li enriched CLYC scintillators using an Am-Be source, J. Instrum. 13 (2018) 11010.
  10. K.E. Mesick, K.D. Bartlett, D.D.S. Coupland, L.C. Stonehill, Effects of protoninduced radiation damage on CLYC and CLLBC performance, Nucl. Instrum. Methods Phys. Res. A. 948 (2019) 1-22.
  11. G. Rooh, H. Kang, H.J. Kim, H. Park, S.H. Doh, Scintillation characteristics of the SrCl2 single crystal for the neutrinoless β+/EC decay search, IEEE Trans. Nucl. Sci. 55 (2008) 1445-1448. https://doi.org/10.1109/TNS.2008.920252
  12. J. Kim, H. Kang, H.J. Kim, H. Park, S. Kim, S. Doh, Scintillation properties of BaxSr1-xCl2 single crystals, IEEE Trans. Nucl. Sci. 55 (2008) 1464-1468. https://doi.org/10.1109/TNS.2008.920429
  13. Q.V. Phan, H.J. Kim, G. Rooh, S.H. Kim, Tl2ZrCl6 crystal: efficient scintillator for X- and γ-ray spectroscopies, J. Alloys Compd. 766 (2018) 326-330. https://doi.org/10.1016/j.jallcom.2018.06.349
  14. P. Bhattacharya, C. Brown, C. Sosa, M. Wart, S. Miller, C. Brecher, V.V. Nagarkar, Tl2ZrCl6 and Tl2HfCl6 intrinsic scintillators for gamma rays and fast neutron detection, IEEE Trans. Nucl. Sci. 67 (2020) 1032-1034. https://doi.org/10.1109/tns.2020.2997659
  15. A. Khan, P.Q. Vuong, G. Rooh, H.J. Kim, S. Kim, Crystal growth and Ce3+ concentration optimization in Tl2LaCl5: an excellent scintillator for the radiation detection, J. Alloys Compd. 827 (2020) 154366. https://doi.org/10.1016/j.jallcom.2020.154366
  16. G. Rooh, H.J. Kim, S. Kim, Study on crystal growth and scintillation characteristics of Cs2LiCeCl6, IEEE Trans. Nucl. Sci. 57 (2010) 1255-1259. https://doi.org/10.1109/TNS.2009.2037903
  17. P.F. Bloser, M.L. McConnell, J.R. Macri, P.J. Bruillard, J.M. Ryan, W. Hajdas, Radiation damage and activation from proton irradiation of advanced scintillators, IEEE Nucl. Sci. Symp. Conf. Rec. 3 (2006) 1500-1505.
  18. E.V.D. Van Loef, P. Dorenbos, C.W.E. Van Eijk, K. Kramer, H.U. Gudel, High-energy-resolution scintillator: Ce3+ activated LaBr3, Appl. Phys. Lett. 79 (2001) 1573-1575. https://doi.org/10.1063/1.1385342
  19. E.V.D. Van Loef, P. Dorenbos, C.W.E. Van Eijk, K. Kramer, H.U. Gudel, Scintillation properties of LaCl3:Ce3+ crystals: fast, efficient, and high-energy resolution scintillators, in: IEEE Trans. Nucl. Sci., 2001, pp. 341-345.
  20. G. Bizarri, P. Dorenbos, Temperature dependent scintillation properties of pure LaCl3, J. Phys. Condens. Matter 21 (2009).
  21. E.V.D. Van Loef, P. Dorenbos, C.W.E. Van Eijk, The scintillation mechanism in LaCl3:Ce3+, J. Phys. Condens. Matter 15 (2003) 1367-1375. https://doi.org/10.1088/0953-8984/15/8/319
  22. F.C.L. Crespi, F. Camera, N. Blasi, A. Bracco, S. Brambilla, B. Million, R. Nicolini, L. Pellegri, S. Riboldi, M. Sassi, O. Wieland, F. Quarati, A. Owens, Alpha-gamma discrimination by pulse shape in LaBr3:Ce and LaCl3:Ce, Nucl. Instrum. Methods Phys. Res. A. 602 (2009) 520-524. https://doi.org/10.1016/j.nima.2009.01.101
  23. W. Wolszczak, P. Dorenbos, Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators, Nucl. Instrum. Methods Phys. Res. A. 857 (2017) 66-74. https://doi.org/10.1016/j.nima.2017.02.041
  24. M.P. Taggart, J. Henderson, Fast-neutron response of LaBr3(Ce) and LaCl3(Ce) scintillators, Nucl. Instrum. Methods Phys. Res. A. 975 (2020) 1-5.
  25. P.Q. Vuong, H.J. Kim, H. Park, G. Rooh, S.H. Kim, Pulse shape discrimination study with Tl2ZrCl6 crystal scintillator, Radiat. Meas. 123 (2019) 83-87. https://doi.org/10.1016/j.radmeas.2019.02.007
  26. B.D. Milbrath, R.C. Runkle, T.W. Hossbach, W.R. Kaye, E.A. Lepel, B.S. McDonald, L.E. Smith, Characterization of alpha contamination in lanthanum trichloride scintillators using coincidence measurements, Nucl. Instrum. Methods Phys. Res. A. 547 (2005) 504-510. https://doi.org/10.1016/j.nima.2004.11.054
  27. R.J. Gehrke, R. Aryaeinejad, J.K. Hartwell, W.Y. Yoon, E. Reber, J.R. Davidson, The γ-ray spectrum of 252Cf and the information contained within it, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 213 (2004) 10-21. https://doi.org/10.1016/S0168-583X(03)01526-X
  28. H.W. Joo, H.S. Park, J.H. Kim, J.Y. Lee, S.K. Kim, Y.D. Kim, H.S. Lee, S.H. Kim, Quenching factor measurement for NaI(Tl) scintillation crystal, Astropart. Phys. 108 (2019) 50-56. https://doi.org/10.1016/j.astropartphys.2019.01.001
  29. R.A. Winyard, J.E. Lutkin, G.W. McBeth, Pulse shape discrimination in inorganic and organic scintillators, I Nucl. Instrum. Methods 95 (1971) 141-153. https://doi.org/10.1016/0029-554X(71)90054-1