DOI QR코드

DOI QR Code

Gamma ray interactions based optimization algorithm: Application in radioisotope identification

  • 투고 : 2021.03.20
  • 심사 : 2021.05.13
  • 발행 : 2021.11.25

초록

This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.

키워드

참고문헌

  1. E.-G. Talbi, Metaheuristics: from Design to Implementation, vol. 74, John Wiley & Sons, 2009.
  2. X.-S. Yang, Engineering Optimization: an Introduction with Metaheuristic Applications, John Wiley & Sons, 2010.
  3. L. Bianchi, M. Dorigo, L.M. Gambardella, W.J. Gutjahr, A survey on metaheuristics for stochastic combinatorial optimization, Nat. Comput. 8 (2) (2009) 239-287. https://doi.org/10.1007/s11047-008-9098-4
  4. F.W. Glover, G.A. Kochenberger, Handbook of Metaheuristics, vol. 57, Springer Science & Business Media, 2006.
  5. S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software 95 (2016) 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008
  6. J.H. Holland, Genetic algorithms, Sci. Am. 267 (1) (1992) 66-73. https://doi.org/10.1038/scientificamerican0792-66
  7. I. Rechenberg, Evolution strategy: natures way of optimization. Optimization: Methods and Applications, Possibilities and Limitations, Springer, 1989, pp. 106-126.
  8. D. Simon, Biogeography-based optimization, IEEE Trans. Evol. Comput. 12 (6) (2008) 702-713. https://doi.org/10.1109/TEVC.2008.919004
  9. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science 220 (4598) (1983) 671-680. https://doi.org/10.1126/science.220.4598.671
  10. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, Gsa: a gravitational search algorithm, Inf. Sci. 179 (13) (2009) 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004
  11. R.A. Formato, Central force optimization, Prog Electromagn Res 77 (2007) 425-491. https://doi.org/10.2528/PIER07082403
  12. A. Kaveh, S. Talatahari, A novel heuristic optimization method: charged system search, Acta Mech. 213 (3-4) (2010) 267-289. https://doi.org/10.1007/s00707-009-0270-4
  13. R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm intelligence 1 (1) (2007) 33-57. https://doi.org/10.1007/s11721-007-0002-0
  14. M. Dorigo, T. Stutzle, Ant colony optimization: overview and recent advances, Techreport, IRIDIA, Universite Libre de Bruxelles 8.
  15. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software 69 (2014) 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  16. X.-S. Yang, Firefly algorithm, Nature-inspired metaheuristic algorithms 20 (2008) 79-90.
  17. F. Glover, M. Laguna, Tabu Search, John Wiley & Sons, Inc., 1993.
  18. Z.W. Geem, Music-inspired Harmony Search Algorithm: Theory and Applications, vol. 191, Springer, 2009.
  19. R.V. Rao, V.J. Savsani, D. Vakharia, Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems, Inf. Sci. 183 (1) (2012) 1-15. https://doi.org/10.1016/j.ins.2011.08.006
  20. F. Ramezani, S. Lotfi, Social-based algorithm (sba), Appl. Soft Comput. 13 (5) (2013) 2837-2856. https://doi.org/10.1016/j.asoc.2012.05.018
  21. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput. 1 (1) (1997) 67-82. https://doi.org/10.1109/4235.585893
  22. G. Gilmore, Practical Gamma-Ray Spectroscopy, John Wiley & Sons, 2011.
  23. S. Ashrafi, O. Jahanbakhsh, D. Alizadeh, B. Salehpour, A novel method for nondestructive compton scatter imaging based on the genetic algorithm, Cent. Eur. J. Phys. 11 (5) (2013) 560-567.
  24. J. Lilley, Nuclear Physics: Principles and Applications, John Wiley & Sons, 2013.
  25. W.R. Leo, Techniques for Nuclear and Particles Physics Experimentsa Howto Approach, 2nd Revised Edition, Springer-Verlag, Berlin, 1994.
  26. N. Tsoulfanidis, S. Landsberger, Measurement and Detection of Radiation, CRC press, 2015.
  27. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010.
  28. M.J. Sasena, P. Papalambros, P. Goovaerts, Exploration of metamodeling sampling criteria for constrained global optimization, Eng. Optim. 34 (3) (2002) 263-278. https://doi.org/10.1080/03052150211751
  29. E. Alba, B. Dorronsoro, The exploration/exploitation tradeoff in dynamic cellular genetic algorithms, IEEE Trans. Evol. Comput. 9 (2) (2005) 126-142. https://doi.org/10.1109/TEVC.2005.843751
  30. J. Chen, B. Xin, Z. Peng, L. Dou, J. Zhang, Optimal contraction theorem for exploration{exploitation tradeoff in search and optimization, IEEE Trans. Syst. Man Cybern. Syst. Hum. 39 (3) (2009) 680-691. https://doi.org/10.1109/TSMCA.2009.2012436
  31. J.G. Digalakis, K.G. Margaritis, On benchmarking functions for genetic algorithms, Int. J. Comput. Math. 77 (4) (2001) 481-506. https://doi.org/10.1080/00207160108805080
  32. J. Momin, X.-S. Yang, A literature survey of benchmark functions for global optimization problems, Journal of Mathematical Modelling and Numerical Optimisation 4 (2) (2013) 150-194. https://doi.org/10.1504/IJMMNO.2013.055204
  33. J. Nocedal, S. Wright, Numerical Optimization, Springer Science & Business Media, 2006.
  34. T. Burr, Michael Hamada, Radio-isotope identification algorithms for NaI g spectra, Algorithms 2 (1) (2009) 339-360. https://doi.org/10.3390/a2010339
  35. A. Taheri, Jinhwan Kim, Kyeongjin Park, Gyuseong Cho, Multi-radioisotope identification algorithm using an artificial neural network for plastic gamma spectra, Appl. Radiat. Isot. 147 (2019) 83-90. https://doi.org/10.1016/j.apradiso.2019.01.005
  36. L. Bouchet, A comparative study of deconvolution methods for gamma-ray spectra, Astron. AstroPhys. Suppl. 113 (1995) 167-183.
  37. M. Mariscotti, A method for automatic identification of peaks in the presence of background and its application to spectrum analysis, Nucl. Instrum. Methods 50 (2) (1967) 309-320. https://doi.org/10.1016/0029-554X(67)90058-4
  38. P. Bandzuch, M. Morhac, J. Kristiak, Study of the van cittert and gold iterative methods of deconvolution and their application in the deconvolution of experimental spectra of positron annihilation, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 384 (2-3) (1997) 506-515. https://doi.org/10.1016/S0168-9002(96)00874-1
  39. T. Kennett, W. Prestwich, A. Robertson, Bayesian deconvolution i: convergent properties, Nucl. Instrum. Methods 151 (1-2) (1978) 285-292. https://doi.org/10.1016/0029-554X(78)90502-5
  40. L.J. Meng, D. Ramsden, An inter-comparison of three spectraldeconvolution algorithms for gamma-ray spectroscopy, IEEE Trans. Nucl. Sci. 47 (4) (2000) 1329-1336. https://doi.org/10.1109/23.872973
  41. C. Carlevaro, M. Wilkinson, L. Barrios, A genetic algorithm approach to routine gamma spectra analysis, J. Instrum. 3 (2008) P01001, 01.
  42. D. Diver, D. Ireland, Spectral decomposition by genetic algorithm, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 399 (2-3) (1997) 414-420. https://doi.org/10.1016/S0168-9002(97)00999-6