과제정보
This work was supported by the National Key Research and Development Program of China (2018YFD0500300) and the Science Foundation of Jilin Province, China (No. 20180101276JC).
참고문헌
- Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28: 603-661. https://doi.org/10.1128/CMR.00134-14
- Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. 2019. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol. 17: 203-218. https://doi.org/10.1038/s41579-018-0147-4
- Assis LM, Nedeljkovic M, Dessen A. 2017. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist. Updat. 31: 1-14. https://doi.org/10.1016/j.drup.2017.03.001
- Thammavongsa V, Kim HK, Missiakas D, Schneewind O. 2015. Staphylococcal manipulation of host immune responses. Nat. Rev. Microbiol. 13: 529-543. https://doi.org/10.1038/nrmicro3521
- Muhlen S, Dersch P. 2016. Anti-virulence strategies to target bacterial infections. Curr. Top. Microbiol. Immunol. 398: 147-183.
- Loeb L. 1903. The influence of certain bacteria on the coagulation of the blood. J. Med. Res. 10: 407-419.
- Bjerketorp J, Jacobsson K, Frykberg L. 2004. The von Willebrand factor-binding protein (vWbp) of Staphylococcus aureus is a coagulase. FEMS Microbiol. Lett. 234: 309-314. https://doi.org/10.1016/j.femsle.2004.03.040
- Kroh HK, Panizzi P, Bock PE. 2009. Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc. Natl. Acad. Sci. USA 106: 7786-7791. https://doi.org/10.1073/pnas.0811750106
- Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, et al. 2003. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425: 535-539. https://doi.org/10.1038/nature01962
- Ichinose A. 2012. Factor XIII is a key molecule at the intersection of coagulation and fibrinolysis as well as inflammation and infection control. Int. J. Hematol. 95: 362-370. https://doi.org/10.1007/s12185-012-1064-3
- Foster TJ. 2019. The MSCRAMM family of cell-wall-anchored surface proteins of Gram-positive cocci. Trends Microbiol. 27: 927-941. https://doi.org/10.1016/j.tim.2019.06.007
- McAdow M, Kim HK, Dedent AC, Hendrickx AP, Schneewind O, Missiakas DM. 2011. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog. 7: e1002307. https://doi.org/10.1371/journal.ppat.1002307
- Sawai T, Tomono K, Yanagihara K, Yamamoto Y, Kaku M, Hirakata Y, et al. 1997. Role of coagulase in a murine model of hematogenous pulmonary infection induced by intravenous injection of Staphylococcus aureus enmeshed in agar beads. Infect. Immun. 65: 466-471. https://doi.org/10.1128/iai.65.2.466-471.1997
- Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. 2010. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog. 6: e1001036. https://doi.org/10.1371/journal.ppat.1001036
- Vanassche T, Kauskot A, Verhaegen J, Peetermans WE, van Ryn J, Schneewind O, et al. 2012. Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation. Thromb. Haemost. 107: 1107-1121. https://doi.org/10.1160/TH11-12-0891
- Bock PE, Panizzi P, Verhamme IM. 2007. Exosites in the substrate specificity of blood coagulation reactions. J. Thromb. Haemost. 5 Suppl 1: 81-94. https://doi.org/10.1111/j.1538-7836.2007.02496.x
- Peetermans M, Verhamme P, Vanassche T. 2015. Coagulase activity by Staphylococcus aureus: a potential target for therapy? Semin. Thromb. Hemost. 41: 433-444. https://doi.org/10.1055/s-0035-1549849
- Vanassche T, Verhaegen J, Peetermans WE, Hoylaerts MF, Verhamme P. 2010. Dabigatran inhibits Staphylococcus aureus coagulase activity. J. Clin. Microbiol. 48: 4248-4250. https://doi.org/10.1128/JCM.00896-10
- Alatri A, Armstrong AE, Greinacher A, Koster A, Kozek-Langenecker SA, Lance MD, et al. 2012. Results of a consensus meeting on the use of argatroban in patients with heparin-induced thrombocytopenia requiring antithrombotic therapy - a European Perspective. Thromb. Res. 129: 426-433. https://doi.org/10.1016/j.thromres.2011.11.041
- Lillo-Le Louet A, Wolf M, Soufir L, Galbois A, Dumenil AS, Offenstadt G, et al. 2012. Life-threatening bleeding in four patients with an unusual excessive response to dabigatran: implications for emergency surgery and resuscitation. Thromb. Haemost. 108: 583-585. https://doi.org/10.1160/TH12-03-0149
- Zhang H, Jiang JM, Han L, Lao YZ, Zheng D, Chen YY, et al. 2019. Uncariitannin, a polyphenolic polymer from Uncaria gambier, attenuates Staphylococcus aureus virulence through an MgrA-mediated regulation of α-hemolysin. Pharmacol. Res. 147: 104328. https://doi.org/10.1016/j.phrs.2019.104328
- Duan J, Li M, Hao Z, Shen X, Liu L, Jin Y, et al. 2018. Subinhibitory concentrations of resveratrol reduce alpha-hemolysin production in Staphylococcus aureus isolates by downregulating saeRS. Emerg. Microbes Infect. 7: 136. https://doi.org/10.1038/s41426-018-0142-x
- Wang L, Li B, Si X, Liu X, Deng X, Niu X, et al. 2019. Quercetin protects rats from catheter-related Staphylococcus aureus infections by inhibiting coagulase activity. J. Cell. Mol. Med. 23: 4808-4818. https://doi.org/10.1111/jcmm.14371
- He M, Min JW, Kong WL, He XH, Li JX, Peng BW. 2016. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115: 74-85. https://doi.org/10.1016/j.fitote.2016.09.011
- Xiao Z, Liu L, Tao W, Pei X, Wang G, Wang M. 2018. Clostridium Tyrobutyricum protect intestinal barrier function from LPS-induced apoptosis via P38/JNK signaling pathway in IPEC-J2 cells. Cell. Physiol. Biochem. 46: 1779-1792. https://doi.org/10.1159/000489364
- Hwang SM, Seki K, Sakurada J, Ogasawara M, Murai M, Ohmayu S, et al. 2013. Improved methods for detection and serotyping of coagulase from Staphylococcus aureus. Microbiol. Immunol. 33: 175-182. https://doi.org/10.1111/j.1348-0421.1989.tb01511.x
- Krishna SN, Luan CH, Mishra RK, Xu L, Scheidt KA, Anderson WF, et al. 2013. A fluorescence-based thermal shift assay identifies inhibitors of mitogen activated protein kinase kinase 4. PLoS One 8: e81504. https://doi.org/10.1371/journal.pone.0081504
- Bell L, Bickford S, Nguyen PH, Wang J, He T, Zhang B, et al. 2008. Evaluation of fluorescence- and mass spectrometry-based CYP inhibition assays for use in drug discovery. J. Biomol. Screen. 13: 343-353. https://doi.org/10.1177/1087057108317480
- Sok V, Fragoso A. 2018. Kinetic, spectroscopic and computational docking study of the inhibitory effect of the pesticides 2,4,5-T, 2,4-D and glyphosate on the diphenolase activity of mushroom tyrosinase. Int. J. Biol. Macromol. 118: 427-434. https://doi.org/10.1016/j.ijbiomac.2018.06.098
- Sanner MF. 1999. Python: a programming language for software integration and development. J. Mol. Graph. Model. 17: 57-61.
- Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. 2009. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791. https://doi.org/10.1002/jcc.21256
- Pierce LC, Salomon-Ferrer R, Augusto FdOC, McCammon JA, Walker RC. 2012. Routine access to millisecond time scale events with accelerated molecular dynamics. J. Chem. Theory Comput. 8: 2997-3002. https://doi.org/10.1021/ct300284c
- Gotz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC. 2012. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. generalized born. J. Chem. Theory Comput. 8: 1542-1555. https://doi.org/10.1021/ct200909j
- Salomon-Ferrer R, Gotz AW, Poole D, Le Grand S, Walker RC. 2013. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald. J. Chem. Theory Comput. 9: 3878-3888. https://doi.org/10.1021/ct400314y
- Tam K, Torres VJ. 2019. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol. Spectr. 7: 10.1128/microbiolspec.GPP3-0039-2018.
- Kong C, Neoh HM, Nathan S. 2016. Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins 8: 72. https://doi.org/10.3390/toxins8030072
- Gao Z, Luan Y, Yang P, Wang L, Zhang H, Jing S, et al. 2020. Targeting staphylocoagulase with isoquercitrin protects mice from Staphylococcus aureus-induced pneumonia. Appl. Microbiol. Biotechnol. 104: 3909-3919. https://doi.org/10.1007/s00253-020-10486-2
- Boufridi A, Quinn RJ. 2018. Harnessing the properties of natural products. Annu. Rev. Pharmacol. Toxicol. 58: 451-470. https://doi.org/10.1146/annurev-pharmtox-010716-105029
- Zhang H, Luan Y, Jing S, Wang Y, Gao Z, Yang P, et al. 2020. Baicalein mediates protection against Staphylococcus aureus-induced pneumonia by inhibiting the coagulase activity of vWbp. Biochem. Pharmacol. 178: 114024. https://doi.org/10.1016/j.bcp.2020.114024
- Hwang SM, Seki K, Sakurada J, Ogasawara M, Murai M, Ohmayu S, et al. 1989. Improved methods for detection and serotyping of coagulase from Staphylococcus aureus. Microbiol. Immunol. 33: 175-182. https://doi.org/10.1111/j.1348-0421.1989.tb01511.x