DOI QR코드

DOI QR Code

Anticancer Activity of Periplanetasin-5, an Antimicrobial Peptide from the Cockroach Periplaneta americana

  • Kim, In-Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Choi, Ra-Yeong (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Joon Ha (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Seo, Minchul (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Hwa Jeong (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Mi-Ae (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Seong Hyun (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Iksoo (College of Agriculture and Life Sciences, Chonnam National University) ;
  • Hwang, Jae Sam (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
  • 투고 : 2021.04.30
  • 심사 : 2021.08.10
  • 발행 : 2021.10.28

초록

Cockroaches live in places where various pathogens exist and thus are more likely to use antimicrobial compounds to defend against pathogen intrusions. We previously performed an in silico analysis of the Periplaneta americana transcriptome and detected periplanetasin-5 using an in silico antimicrobial peptide prediction method. In this study, we investigated whether periplanetasin-5 has anticancer activity against the human leukemia cell line K562. Cell growth and survival of K562 cells treated with periplanetasin-5 were decreased in a dose-dependent manner. By using flow cytometric analysis, acridine orange/ethidium bromide (AO/EB) staining and DNA fragmentation, we found that periplanetasin-5 induced apoptotic and necrotic cell death in leukemia cells. In addition, these events were associated with increased levels of the pro-apoptotic proteins Fas and cytochrome c and reduced levels of the anti-apoptotic protein Bcl-2. Periplanetasin-5 induces the cleavage of pro-caspase-9, pro-caspase-8, pro-caspase-3, and poly (ADP-ribose) polymerase (PARP). The above data suggest that periplanetasin-5 induces apoptosis via both the intrinsic and extrinsic pathways. Moreover, caspase-related apoptosis was further confirmed by using the caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK), which reversed the periplanetasin-5-induced reduction in cell viability. In conclusion, periplanetasin-5 caused apoptosis in leukemia cells, suggesting its potential utility as an anticancer therapeutic agent.

키워드

과제정보

This work was supported by a grant from the Next Generation BioGreen 21 (Project No. PJ01325601) and the Agenda Program, Rural Development Administration, Republic of Korea (Project No. PJ01311001).

참고문헌

  1. Brown P, Inaba H, Annesley C, Beck J, Colace S, Dallas M, et al. 2020. Pediatric acute lymphoblastic leukemia, version 2.2020, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 18: 81-112. https://doi.org/10.6004/jnccn.2020.0001
  2. Siegel RL, Miller KD, Jemal A. 2016. Cancer statistics, 2016. CA. Cancer J. Clin. 66: 7-30. https://doi.org/10.3322/caac.21332
  3. Solans M, Romaguera D, Gracia-Lavedan E, Molinuevo A, Benavente Y, Saez M, et al. 2020. Adherence to the 2018 WCRF/AICR cancer prevention guidelines and chronic lymphocytic leukemia in the MCC-Spain study. Cancer Epidemiol. 64: 101629. https://doi.org/10.1016/j.canep.2019.101629
  4. Hultmark D, Steiner H, Rasmuson T, Boman HG. 1980. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106: 7-16. https://doi.org/10.1111/j.1432-1033.1980.tb05991.x
  5. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248. https://doi.org/10.1038/292246a0
  6. Bulet P, Stocklin R. 2005. Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 12: 3-11. https://doi.org/10.2174/0929866053406011
  7. Ganz T, Lehrer RI. 1994. Defensins. Curr. Opin. Immunol. 6: 584-589. https://doi.org/10.1016/0952-7915(94)90145-7
  8. Otvos J, Laszlo. 2000. Antibacterial peptides isolated from insects. J. Pept. Sci. 6: 497-511. https://doi.org/10.1002/1099-1387(200010)6:10<497::AID-PSC277>3.0.CO;2-W
  9. Kuo H, Tseng C, Chen N, Tai M, Hung H, Feng C, et al. 2018. MSP-4, an antimicrobial peptide, induces apoptosis via activation of extrinsic Fas/FasL-and intrinsic mitochondria-mediated pathways in one osteosarcoma cell line. Mar. Drugs. 16: 8. https://doi.org/10.3390/md16010008
  10. Zhang H, Han D, Lv T, Liu K, Yang Y, Xu X, et al. 2019. Novel peptide myristoly-CM4 induces selective cytotoxicity in leukemia K562/MDR and Jurkat cells by necrosis and/or apoptosis pathway. Drug Des. Devel. Ther. 13: 2153-2167. https://doi.org/10.2147/DDDT.S207224
  11. Ahmed A, Minhas K, Namood-e-Sahar OA, Khan FS. 2010. In silico identification of potential American cockroach (Periplaneta americana) allergens. Iran J. Public Health 39: 109-115.
  12. Chen W, Liu Y, Jiang G. 2015. De novo assembly and characterization of the testis transcriptome and development of EST-SSR markers in the cockroach Periplaneta americana. Sci. Rep. 5: 11144. https://doi.org/10.1038/srep11144
  13. Kim IW, Lee JH, Subramaniyam S, Yun EY, Kim I, Park J, et al. 2016. De Novo transcriptome analysis and detection of antimicrobial peptides of the American cockroach Periplaneta americana (Linnaeus). PLoS One 11: e0155304. https://doi.org/10.1371/journal.pone.0155304
  14. Kim I, Lee JH, Kwon Y, Yun E, Nam S, Ahn M, et al. 2013. Anticancer activity of a synthetic peptide derived from harmoniasin, an antibacterial peptide from the ladybug Harmonia axyridis. Int. J. Oncol. 43: 622-628. https://doi.org/10.3892/ijo.2013.1973
  15. Fan J, Wang P, Wang X, Tang W, Liu C, Wang Y, et al. 2015. Induction of mitochondrial dependent apoptosis in human leukemia K562 cells by Meconopsis integrifolia: a species from traditional Tibetan medicine. Molecules 20: 11981-11993. https://doi.org/10.3390/molecules200711981
  16. Bhutia SK, Mallick SK, Stevens SM, Prokai L, Vishwanatha JK, Maiti TK. 2008. Induction of mitochondria-dependent apoptosis by Abrus agglutinin derived peptides in human cervical cancer cell. Toxicol. In Vitro 22: 344-351. https://doi.org/10.1016/j.tiv.2007.09.016
  17. Reed JC. 2003. Apoptosis-targeted therapies for cancer. Cancer Cell 3: 17-22. https://doi.org/10.1016/S1535-6108(02)00241-6
  18. Hong S, Choi YH. 2012. Bufalin induces apoptosis through activation of both the intrinsic and extrinsic pathways in human bladder cancer cells. Oncol. Rep. 27: 114-120. https://doi.org/10.3892/or.2011.1451
  19. Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y. 2014. Peptide-based cancer therapy: opportunity and challenge. Cancer Lett. 351: 13-22. https://doi.org/10.1016/j.canlet.2014.05.002
  20. Lee JH, Kim I, Kim S, Kim M, Yun E, Nam S, et al. 2015. Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 25: 1275-1280. https://doi.org/10.4014/jmb.1503.03091
  21. Lee JH, Kim I, Kim S, Yun E, Nam S, Ahn M, et al. 2015. Anticancer activity of CopA3 dimer peptide in human gastric cancer cells. BMB Rep. 48: 324-329. https://doi.org/10.5483/BMBRep.2015.48.6.073
  22. Flores-Alvarez LJ, Guzman-Rodriguez JJ, Lopez-Gomez R, Salgado-Garciglia R, Ochoa-Zarzosa A, Lopez-Meza JE. 2018. PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis. Int. J. Biochem. Cell Biol. 99: 10-18. https://doi.org/10.1016/j.biocel.2018.03.013
  23. Leite ML, da Cunha NB, Costa FF. 2018. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol. Ther. 183: 160-176. https://doi.org/10.1016/j.pharmthera.2017.10.010
  24. Hoskin DW, Ramamoorthy A. 2008. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta 1778: 357-375. https://doi.org/10.1016/j.bbamem.2007.11.008
  25. Chwieralski CE, Welte T, Buhling F. 2006. Cathepsin-regulated apoptosis. Apoptosis 11: 143-149. https://doi.org/10.1007/s10495-006-3486-y
  26. Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35: 495-516. https://doi.org/10.1080/01926230701320337
  27. Fulda S, Debatin K. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25: 4798-4811. https://doi.org/10.1038/sj.onc.1209608
  28. Jin Z, El-Deiry WS. 2005. Overview of cell death signaling pathways. Cancer Biol. Ther. 4: 147-171. https://doi.org/10.4161/cbt.4.2.1508
  29. Wang B, Zhao X. 2017. Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells. Oncol. Rep. 37: 1132-1140. https://doi.org/10.3892/or.2016.5303

피인용 문헌

  1. Evaluation of antimicrobial activity of bacterial symbionts isolated from wild field cockroach Blattella vaga from Saudi Arabia vol.28, pp.11, 2021, https://doi.org/10.1016/j.sjbs.2021.06.092