Browse > Article
http://dx.doi.org/10.4014/jmb.2105.05013

Isovitexin Is a Direct Inhibitor of Staphylococcus aureus Coagulase  

Xiang, Hua (College of Animal Medicine, Jilin Agricultural University)
Yang, Panpan (College of Basic Medical Science, Jilin University)
Wang, Li (College of Animal Science, Jilin University)
Li, Jiaxin (College of Animal Science, Jilin University)
Wang, Tiedong (College of Animal Science, Jilin University)
Xue, Junze (College of Animal Medicine, Jilin Agricultural University)
Wang, Dacheng (College of Animal Science, Jilin University)
Ma, Hongxia (College of Animal Medicine, Jilin Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.10, 2021 , pp. 1350-1357 More about this Journal
Abstract
Staphylococcus aureus (S. aureus) is a major pathogen that causes human pneumonia, leading to significant morbidity and mortality. S. aureus coagulase (Coa) triggers the polymerization of fibrin by activating host prothrombin, which then converts fibrinogen to fibrin and contributes to S. aureus pathogenesis and persistent infection. In our research, we demonstrate that isovitexin, an active traditional Chinese medicine component, can inhibit the coagulase activity of Coa but does not interfere with the growth of S. aureus. Furthermore, we show through thermal shift and fluorescence quenching assays that isovitexin directly binds to Coa. Dynamic simulation and structure-activity relationship analyses suggest that V191 and P268 are key amino acid residues responsible for the binding of isovitexin to Coa. Taken together, these data indicate that isovitexin is a direct Coa inhibitor and a promising candidate for drug development against S. aureus infection.
Keywords
Isovitexin; coagulase; pneumonia; Staphylococcus aureus; inhibitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vanassche T, Verhaegen J, Peetermans WE, Hoylaerts MF, Verhamme P. 2010. Dabigatran inhibits Staphylococcus aureus coagulase activity. J. Clin. Microbiol. 48: 4248-4250.   DOI
2 Bock PE, Panizzi P, Verhamme IM. 2007. Exosites in the substrate specificity of blood coagulation reactions. J. Thromb. Haemost. 5 Suppl 1: 81-94.   DOI
3 Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, et al. 2003. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425: 535-539.   DOI
4 Kroh HK, Panizzi P, Bock PE. 2009. Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc. Natl. Acad. Sci. USA 106: 7786-7791.   DOI
5 Foster TJ. 2019. The MSCRAMM family of cell-wall-anchored surface proteins of Gram-positive cocci. Trends Microbiol. 27: 927-941.   DOI
6 Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. 2010. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog. 6: e1001036.   DOI
7 Peetermans M, Verhamme P, Vanassche T. 2015. Coagulase activity by Staphylococcus aureus: a potential target for therapy? Semin. Thromb. Hemost. 41: 433-444.   DOI
8 Muhlen S, Dersch P. 2016. Anti-virulence strategies to target bacterial infections. Curr. Top. Microbiol. Immunol. 398: 147-183.
9 Wang L, Li B, Si X, Liu X, Deng X, Niu X, et al. 2019. Quercetin protects rats from catheter-related Staphylococcus aureus infections by inhibiting coagulase activity. J. Cell. Mol. Med. 23: 4808-4818.   DOI
10 Hwang SM, Seki K, Sakurada J, Ogasawara M, Murai M, Ohmayu S, et al. 2013. Improved methods for detection and serotyping of coagulase from Staphylococcus aureus. Microbiol. Immunol. 33: 175-182.   DOI
11 Sok V, Fragoso A. 2018. Kinetic, spectroscopic and computational docking study of the inhibitory effect of the pesticides 2,4,5-T, 2,4-D and glyphosate on the diphenolase activity of mushroom tyrosinase. Int. J. Biol. Macromol. 118: 427-434.   DOI
12 Alatri A, Armstrong AE, Greinacher A, Koster A, Kozek-Langenecker SA, Lance MD, et al. 2012. Results of a consensus meeting on the use of argatroban in patients with heparin-induced thrombocytopenia requiring antithrombotic therapy - a European Perspective. Thromb. Res. 129: 426-433.   DOI
13 Boufridi A, Quinn RJ. 2018. Harnessing the properties of natural products. Annu. Rev. Pharmacol. Toxicol. 58: 451-470.   DOI
14 Tam K, Torres VJ. 2019. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol. Spectr. 7: 10.1128/microbiolspec.GPP3-0039-2018.   DOI
15 Pierce LC, Salomon-Ferrer R, Augusto FdOC, McCammon JA, Walker RC. 2012. Routine access to millisecond time scale events with accelerated molecular dynamics. J. Chem. Theory Comput. 8: 2997-3002.   DOI
16 Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. 2019. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol. 17: 203-218.   DOI
17 Zhang H, Jiang JM, Han L, Lao YZ, Zheng D, Chen YY, et al. 2019. Uncariitannin, a polyphenolic polymer from Uncaria gambier, attenuates Staphylococcus aureus virulence through an MgrA-mediated regulation of α-hemolysin. Pharmacol. Res. 147: 104328.   DOI
18 Duan J, Li M, Hao Z, Shen X, Liu L, Jin Y, et al. 2018. Subinhibitory concentrations of resveratrol reduce alpha-hemolysin production in Staphylococcus aureus isolates by downregulating saeRS. Emerg. Microbes Infect. 7: 136.   DOI
19 He M, Min JW, Kong WL, He XH, Li JX, Peng BW. 2016. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115: 74-85.   DOI
20 Xiao Z, Liu L, Tao W, Pei X, Wang G, Wang M. 2018. Clostridium Tyrobutyricum protect intestinal barrier function from LPS-induced apoptosis via P38/JNK signaling pathway in IPEC-J2 cells. Cell. Physiol. Biochem. 46: 1779-1792.   DOI
21 Kong C, Neoh HM, Nathan S. 2016. Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins 8: 72.   DOI
22 Gao Z, Luan Y, Yang P, Wang L, Zhang H, Jing S, et al. 2020. Targeting staphylocoagulase with isoquercitrin protects mice from Staphylococcus aureus-induced pneumonia. Appl. Microbiol. Biotechnol. 104: 3909-3919.   DOI
23 Zhang H, Luan Y, Jing S, Wang Y, Gao Z, Yang P, et al. 2020. Baicalein mediates protection against Staphylococcus aureus-induced pneumonia by inhibiting the coagulase activity of vWbp. Biochem. Pharmacol. 178: 114024.   DOI
24 Lillo-Le Louet A, Wolf M, Soufir L, Galbois A, Dumenil AS, Offenstadt G, et al. 2012. Life-threatening bleeding in four patients with an unusual excessive response to dabigatran: implications for emergency surgery and resuscitation. Thromb. Haemost. 108: 583-585.   DOI
25 Sanner MF. 1999. Python: a programming language for software integration and development. J. Mol. Graph. Model. 17: 57-61.
26 Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. 2009. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791.   DOI
27 Gotz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC. 2012. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. generalized born. J. Chem. Theory Comput. 8: 1542-1555.   DOI
28 Salomon-Ferrer R, Gotz AW, Poole D, Le Grand S, Walker RC. 2013. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald. J. Chem. Theory Comput. 9: 3878-3888.   DOI
29 Krishna SN, Luan CH, Mishra RK, Xu L, Scheidt KA, Anderson WF, et al. 2013. A fluorescence-based thermal shift assay identifies inhibitors of mitogen activated protein kinase kinase 4. PLoS One 8: e81504.   DOI
30 Hwang SM, Seki K, Sakurada J, Ogasawara M, Murai M, Ohmayu S, et al. 1989. Improved methods for detection and serotyping of coagulase from Staphylococcus aureus. Microbiol. Immunol. 33: 175-182.   DOI
31 Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28: 603-661.   DOI
32 Assis LM, Nedeljkovic M, Dessen A. 2017. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist. Updat. 31: 1-14.   DOI
33 Thammavongsa V, Kim HK, Missiakas D, Schneewind O. 2015. Staphylococcal manipulation of host immune responses. Nat. Rev. Microbiol. 13: 529-543.   DOI
34 Loeb L. 1903. The influence of certain bacteria on the coagulation of the blood. J. Med. Res. 10: 407-419.
35 Ichinose A. 2012. Factor XIII is a key molecule at the intersection of coagulation and fibrinolysis as well as inflammation and infection control. Int. J. Hematol. 95: 362-370.   DOI
36 Bell L, Bickford S, Nguyen PH, Wang J, He T, Zhang B, et al. 2008. Evaluation of fluorescence- and mass spectrometry-based CYP inhibition assays for use in drug discovery. J. Biomol. Screen. 13: 343-353.   DOI
37 Bjerketorp J, Jacobsson K, Frykberg L. 2004. The von Willebrand factor-binding protein (vWbp) of Staphylococcus aureus is a coagulase. FEMS Microbiol. Lett. 234: 309-314.   DOI
38 McAdow M, Kim HK, Dedent AC, Hendrickx AP, Schneewind O, Missiakas DM. 2011. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog. 7: e1002307.   DOI
39 Sawai T, Tomono K, Yanagihara K, Yamamoto Y, Kaku M, Hirakata Y, et al. 1997. Role of coagulase in a murine model of hematogenous pulmonary infection induced by intravenous injection of Staphylococcus aureus enmeshed in agar beads. Infect. Immun. 65: 466-471.   DOI
40 Vanassche T, Kauskot A, Verhaegen J, Peetermans WE, van Ryn J, Schneewind O, et al. 2012. Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation. Thromb. Haemost. 107: 1107-1121.   DOI